Combinatorial geometries of field extensions
We classify the algebraic combinatorial geometries of arbitrary field extensions of transcendence degree greater than 4 and describe their groups of automorphisms. Our results and proofs extend similar results and proofs by Evans and Hrushovski in the case of algebraically closed fields. The classif...
Gespeichert in:
Veröffentlicht in: | The Bulletin of the London Mathematical Society 2008-10, Vol.40 (5), p.789-800 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We classify the algebraic combinatorial geometries of arbitrary field extensions of transcendence degree greater than 4 and describe their groups of automorphisms. Our results and proofs extend similar results and proofs by Evans and Hrushovski in the case of algebraically closed fields. The classification of projective planes in algebraic combinatorial geometries in arbitrary fields of characteristic zero will also be given. |
---|---|
ISSN: | 0024-6093 1469-2120 |
DOI: | 10.1112/blms/bdn057 |