Uniqueness of solutions to weak parabolic equations for measures

We study uniqueness of solutions of parabolic equations for measures μ(dt dx) = μt(dx)dt of the type L* μ = 0, satisfying μt → ν as t → 0, where each μt is a probability measure on ℝd, L = ∂t + aij(t, x)∂xi∂xj + bi(t, x)∂xj is a differential operator on (0, T) × ℝd and ν is a given initial measure....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Bulletin of the London Mathematical Society 2007-08, Vol.39 (4), p.631-640
Hauptverfasser: Bogachev, V. I., Da Prato, G., Röckner, M., Stannat, W.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study uniqueness of solutions of parabolic equations for measures μ(dt dx) = μt(dx)dt of the type L* μ = 0, satisfying μt → ν as t → 0, where each μt is a probability measure on ℝd, L = ∂t + aij(t, x)∂xi∂xj + bi(t, x)∂xj is a differential operator on (0, T) × ℝd and ν is a given initial measure. One main result is that uniqueness holds under uniform ellipticity and Lipschitz conditions on aij but for bi merely local integrability and coercivity conditions are sufficient.
ISSN:0024-6093
1469-2120
DOI:10.1112/blms/bdm046