Uniqueness of solutions to weak parabolic equations for measures
We study uniqueness of solutions of parabolic equations for measures μ(dt dx) = μt(dx)dt of the type L* μ = 0, satisfying μt → ν as t → 0, where each μt is a probability measure on ℝd, L = ∂t + aij(t, x)∂xi∂xj + bi(t, x)∂xj is a differential operator on (0, T) × ℝd and ν is a given initial measure....
Gespeichert in:
Veröffentlicht in: | The Bulletin of the London Mathematical Society 2007-08, Vol.39 (4), p.631-640 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study uniqueness of solutions of parabolic equations for measures μ(dt dx) = μt(dx)dt of the type L* μ = 0, satisfying μt → ν as t → 0, where each μt is a probability measure on ℝd, L = ∂t + aij(t, x)∂xi∂xj + bi(t, x)∂xj is a differential operator on (0, T) × ℝd and ν is a given initial measure. One main result is that uniqueness holds under uniform ellipticity and Lipschitz conditions on aij but for bi merely local integrability and coercivity conditions are sufficient. |
---|---|
ISSN: | 0024-6093 1469-2120 |
DOI: | 10.1112/blms/bdm046 |