Monotone versus non‐monotone projective operators

For a class of operators Γ$\Gamma$, let |Γ|$|\Gamma |$ denote the closure ordinal of Γ$\Gamma$‐inductive definitions. We give upper bounds on the values of |Σ2n+11,mon|$|\Sigma ^{1,mon}_{2n+1}|$ and |Π2n+21,mon|$|\Pi ^{1,mon}_{2n+2}|$ under the assumption that all projective sets of reals are determ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Bulletin of the London Mathematical Society 2024-12, Vol.57 (1), p.256-264
Hauptverfasser: Aguilera, J. P., Welch, P. D.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 264
container_issue 1
container_start_page 256
container_title The Bulletin of the London Mathematical Society
container_volume 57
creator Aguilera, J. P.
Welch, P. D.
description For a class of operators Γ$\Gamma$, let |Γ|$|\Gamma |$ denote the closure ordinal of Γ$\Gamma$‐inductive definitions. We give upper bounds on the values of |Σ2n+11,mon|$|\Sigma ^{1,mon}_{2n+1}|$ and |Π2n+21,mon|$|\Pi ^{1,mon}_{2n+2}|$ under the assumption that all projective sets of reals are determined, significantly improving the known results. In particular, the bounds show that |Πn1,mon|
doi_str_mv 10.1112/blms.13194
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1112_blms_13194</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>BLMS13194</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1624-e1f717d104796ccb4ef903e31f09fa0ddd1aea73a37dd624c25c44d074c3aef83</originalsourceid><addsrcrecordid>eNp9j8FKxDAURYMoWEc3fkHXQsf3mtjYpQ46Ch1cqOuQSV6gQ9uUpI7Mzk_wG_0SO1a3rh5czr2Pw9g5whwR88t108Y5cizFAUtQFGWWYw6HLAHIRVZAyY_ZSYwbAOQgMWF85Ts_-I7SLYX4FtPOd18fn-1f2ge_ITPUW0p9T0EPPsRTduR0E-ns987Y6_3dy-Ihq56Wj4ubKjNYjN8InURpEYQsC2PWglwJnDg6KJ0Gay1q0pJrLq0dCya_MkJYkMJwTe6az9jFtGuCjzGQU32oWx12CkHtddVeV_3ojjBO8Hvd0O4fUt1Wq-ep8w0YqFn8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Monotone versus non‐monotone projective operators</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Aguilera, J. P. ; Welch, P. D.</creator><creatorcontrib>Aguilera, J. P. ; Welch, P. D.</creatorcontrib><description>For a class of operators Γ$\Gamma$, let |Γ|$|\Gamma |$ denote the closure ordinal of Γ$\Gamma$‐inductive definitions. We give upper bounds on the values of |Σ2n+11,mon|$|\Sigma ^{1,mon}_{2n+1}|$ and |Π2n+21,mon|$|\Pi ^{1,mon}_{2n+2}|$ under the assumption that all projective sets of reals are determined, significantly improving the known results. In particular, the bounds show that |Πn1,mon|&lt;|Πn1|$|\Pi ^{1,mon}_{n}| &lt; |\Pi ^1_{n}|$ and |Σn1,mon|&lt;|Σn1|$|\Sigma ^{1,mon}_{n}| &lt; |\Sigma ^1_{n}|$ hold for 2⩽n$2\leqslant n$ under the assumption of projective determinacy. Some of these inequalities were obtained by Aanderaa in the 70s via recursion‐theoretic methods but never appeared in print. Our proofs are model‐theoretic.</description><identifier>ISSN: 0024-6093</identifier><identifier>EISSN: 1469-2120</identifier><identifier>DOI: 10.1112/blms.13194</identifier><language>eng</language><ispartof>The Bulletin of the London Mathematical Society, 2024-12, Vol.57 (1), p.256-264</ispartof><rights>2024 The Author(s). is copyright © London Mathematical Society.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1624-e1f717d104796ccb4ef903e31f09fa0ddd1aea73a37dd624c25c44d074c3aef83</cites><orcidid>0000-0002-2768-6714</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1112%2Fblms.13194$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1112%2Fblms.13194$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,1414,27911,27912,45561,45562</link.rule.ids></links><search><creatorcontrib>Aguilera, J. P.</creatorcontrib><creatorcontrib>Welch, P. D.</creatorcontrib><title>Monotone versus non‐monotone projective operators</title><title>The Bulletin of the London Mathematical Society</title><description>For a class of operators Γ$\Gamma$, let |Γ|$|\Gamma |$ denote the closure ordinal of Γ$\Gamma$‐inductive definitions. We give upper bounds on the values of |Σ2n+11,mon|$|\Sigma ^{1,mon}_{2n+1}|$ and |Π2n+21,mon|$|\Pi ^{1,mon}_{2n+2}|$ under the assumption that all projective sets of reals are determined, significantly improving the known results. In particular, the bounds show that |Πn1,mon|&lt;|Πn1|$|\Pi ^{1,mon}_{n}| &lt; |\Pi ^1_{n}|$ and |Σn1,mon|&lt;|Σn1|$|\Sigma ^{1,mon}_{n}| &lt; |\Sigma ^1_{n}|$ hold for 2⩽n$2\leqslant n$ under the assumption of projective determinacy. Some of these inequalities were obtained by Aanderaa in the 70s via recursion‐theoretic methods but never appeared in print. Our proofs are model‐theoretic.</description><issn>0024-6093</issn><issn>1469-2120</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp9j8FKxDAURYMoWEc3fkHXQsf3mtjYpQ46Ch1cqOuQSV6gQ9uUpI7Mzk_wG_0SO1a3rh5czr2Pw9g5whwR88t108Y5cizFAUtQFGWWYw6HLAHIRVZAyY_ZSYwbAOQgMWF85Ts_-I7SLYX4FtPOd18fn-1f2ge_ITPUW0p9T0EPPsRTduR0E-ns987Y6_3dy-Ihq56Wj4ubKjNYjN8InURpEYQsC2PWglwJnDg6KJ0Gay1q0pJrLq0dCya_MkJYkMJwTe6az9jFtGuCjzGQU32oWx12CkHtddVeV_3ojjBO8Hvd0O4fUt1Wq-ep8w0YqFn8</recordid><startdate>20241217</startdate><enddate>20241217</enddate><creator>Aguilera, J. P.</creator><creator>Welch, P. D.</creator><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2768-6714</orcidid></search><sort><creationdate>20241217</creationdate><title>Monotone versus non‐monotone projective operators</title><author>Aguilera, J. P. ; Welch, P. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1624-e1f717d104796ccb4ef903e31f09fa0ddd1aea73a37dd624c25c44d074c3aef83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aguilera, J. P.</creatorcontrib><creatorcontrib>Welch, P. D.</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><jtitle>The Bulletin of the London Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aguilera, J. P.</au><au>Welch, P. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monotone versus non‐monotone projective operators</atitle><jtitle>The Bulletin of the London Mathematical Society</jtitle><date>2024-12-17</date><risdate>2024</risdate><volume>57</volume><issue>1</issue><spage>256</spage><epage>264</epage><pages>256-264</pages><issn>0024-6093</issn><eissn>1469-2120</eissn><abstract>For a class of operators Γ$\Gamma$, let |Γ|$|\Gamma |$ denote the closure ordinal of Γ$\Gamma$‐inductive definitions. We give upper bounds on the values of |Σ2n+11,mon|$|\Sigma ^{1,mon}_{2n+1}|$ and |Π2n+21,mon|$|\Pi ^{1,mon}_{2n+2}|$ under the assumption that all projective sets of reals are determined, significantly improving the known results. In particular, the bounds show that |Πn1,mon|&lt;|Πn1|$|\Pi ^{1,mon}_{n}| &lt; |\Pi ^1_{n}|$ and |Σn1,mon|&lt;|Σn1|$|\Sigma ^{1,mon}_{n}| &lt; |\Sigma ^1_{n}|$ hold for 2⩽n$2\leqslant n$ under the assumption of projective determinacy. Some of these inequalities were obtained by Aanderaa in the 70s via recursion‐theoretic methods but never appeared in print. Our proofs are model‐theoretic.</abstract><doi>10.1112/blms.13194</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-2768-6714</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0024-6093
ispartof The Bulletin of the London Mathematical Society, 2024-12, Vol.57 (1), p.256-264
issn 0024-6093
1469-2120
language eng
recordid cdi_crossref_primary_10_1112_blms_13194
source Wiley Online Library Journals Frontfile Complete
title Monotone versus non‐monotone projective operators
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T01%3A06%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monotone%20versus%20non%E2%80%90monotone%20projective%20operators&rft.jtitle=The%20Bulletin%20of%20the%20London%20Mathematical%20Society&rft.au=Aguilera,%20J.%20P.&rft.date=2024-12-17&rft.volume=57&rft.issue=1&rft.spage=256&rft.epage=264&rft.pages=256-264&rft.issn=0024-6093&rft.eissn=1469-2120&rft_id=info:doi/10.1112/blms.13194&rft_dat=%3Cwiley_cross%3EBLMS13194%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true