Monotone versus non‐monotone projective operators
For a class of operators Γ$\Gamma$, let |Γ|$|\Gamma |$ denote the closure ordinal of Γ$\Gamma$‐inductive definitions. We give upper bounds on the values of |Σ2n+11,mon|$|\Sigma ^{1,mon}_{2n+1}|$ and |Π2n+21,mon|$|\Pi ^{1,mon}_{2n+2}|$ under the assumption that all projective sets of reals are determ...
Gespeichert in:
Veröffentlicht in: | The Bulletin of the London Mathematical Society 2024-12, Vol.57 (1), p.256-264 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For a class of operators Γ$\Gamma$, let |Γ|$|\Gamma |$ denote the closure ordinal of Γ$\Gamma$‐inductive definitions. We give upper bounds on the values of |Σ2n+11,mon|$|\Sigma ^{1,mon}_{2n+1}|$ and |Π2n+21,mon|$|\Pi ^{1,mon}_{2n+2}|$ under the assumption that all projective sets of reals are determined, significantly improving the known results. In particular, the bounds show that |Πn1,mon| |
---|---|
ISSN: | 0024-6093 1469-2120 |
DOI: | 10.1112/blms.13194 |