Decoupling for Schatten class operators in the setting of quantum harmonic analysis
We introduce the notion of decoupling for operators, and prove an equivalence between classical ℓqLp$\ell ^qL^p$ decoupling for functions and ℓqSp$\ell ^q{\mathcal {S}}^p$ decoupling for operators on bounded sets in R2d${\mathbb {R}}^{2d}$. We also show that the equivalence depends only on the bound...
Gespeichert in:
Veröffentlicht in: | The Bulletin of the London Mathematical Society 2025-01, Vol.57 (1), p.23-37 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We introduce the notion of decoupling for operators, and prove an equivalence between classical ℓqLp$\ell ^qL^p$ decoupling for functions and ℓqSp$\ell ^q{\mathcal {S}}^p$ decoupling for operators on bounded sets in R2d${\mathbb {R}}^{2d}$. We also show that the equivalence depends only on the bounded set Ω$\Omega$ and not on the values of p,q$p,q$ nor on the partition of Ω$\Omega$. The proof relies on a quantum version of Wiener's division lemma. |
---|---|
ISSN: | 0024-6093 1469-2120 |
DOI: | 10.1112/blms.13178 |