Approximate norm‐additive maps on Banach spaces
Let X,Y$X, Y$ be two Banach spaces, F:X→Y$F:X\rightarrow Y$ be an ε$\varepsilon$‐norm‐additive map for some ε⩾0$\varepsilon \geqslant 0$, that is, |∥F(x)+F(y)∥−∥x+y∥|⩽ε,for allx,y∈X.$$\begin{equation*} \big\vert \Vert F(x)+F(y)\Vert -\Vert x+y\Vert \big\vert \leqslant \varepsilon, {\text{\,for all\,...
Gespeichert in:
Veröffentlicht in: | The Bulletin of the London Mathematical Society 2024-09, Vol.56 (9), p.2991-3010 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3010 |
---|---|
container_issue | 9 |
container_start_page | 2991 |
container_title | The Bulletin of the London Mathematical Society |
container_volume | 56 |
creator | Sun, Longfa Cai, Gang Zheng, Bentuo |
description | Let X,Y$X, Y$ be two Banach spaces, F:X→Y$F:X\rightarrow Y$ be an ε$\varepsilon$‐norm‐additive map for some ε⩾0$\varepsilon \geqslant 0$, that is,
|∥F(x)+F(y)∥−∥x+y∥|⩽ε,for allx,y∈X.$$\begin{equation*} \big\vert \Vert F(x)+F(y)\Vert -\Vert x+y\Vert \big\vert \leqslant \varepsilon, {\text{\,for all\,}} x,y\in X. \end{equation*}$$In this paper, we prove that if F$F$ is surjective with F(0)=0$F(0)=0$, then there exists a linear surjective isometry U:X→Y$U:X\rightarrow Y$ such that
∥F(x)−U(x)∥⩽32ε,for allx∈X.$$\begin{equation*} \Vert F(x)-U(x)\Vert \leqslant \frac{3}{2}\varepsilon, {\text{\,for all\,}} x\in X. \end{equation*}$$The estimate 32ε$\frac{3}{2}\varepsilon$ is sharp. We also approximate standard surjective ε$\varepsilon$‐norm‐additive maps between the positive cones of continuous function spaces by linear isometries within a sharp approximation error 32ε$\frac{3}{2}\varepsilon$. |
doi_str_mv | 10.1112/blms.13115 |
format | Article |
fullrecord | <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1112_blms_13115</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>BLMS13115</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1625-42f257a76940278641afcec9fd35027f571d8e1fdd09a9acaebb6f9c969e09fd3</originalsourceid><addsrcrecordid>eNp9j8tKxEAQRRtRMI5u_IKshYxVnaQzvZwZfEHEhbpuKv3ASF50D-rs_AS_0S8xMa5dFVzOvdRh7BxhiYj8smrasMQUMT9gEWZCJhw5HLIIgGeJAJkes5MQXgEwhQIjhuth8P1H3dLOxl3v2-_PLzKm3tVvNm5pCHHfxRvqSL_EYSBtwyk7ctQEe_Z3F-z5-uppe5uUDzd323WZaBQ8TzLueF5QIWQGvFiJDMlpq6UzaT4GLi_QrCw6Y0CSJE22qoSTWgppYaIW7GLe1b4PwVunBj--6fcKQU2yapJVv7IjjDP8Xjd2_w-pNuX949z5ATtLWAo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Approximate norm‐additive maps on Banach spaces</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Sun, Longfa ; Cai, Gang ; Zheng, Bentuo</creator><creatorcontrib>Sun, Longfa ; Cai, Gang ; Zheng, Bentuo</creatorcontrib><description>Let X,Y$X, Y$ be two Banach spaces, F:X→Y$F:X\rightarrow Y$ be an ε$\varepsilon$‐norm‐additive map for some ε⩾0$\varepsilon \geqslant 0$, that is,
|∥F(x)+F(y)∥−∥x+y∥|⩽ε,for allx,y∈X.$$\begin{equation*} \big\vert \Vert F(x)+F(y)\Vert -\Vert x+y\Vert \big\vert \leqslant \varepsilon, {\text{\,for all\,}} x,y\in X. \end{equation*}$$In this paper, we prove that if F$F$ is surjective with F(0)=0$F(0)=0$, then there exists a linear surjective isometry U:X→Y$U:X\rightarrow Y$ such that
∥F(x)−U(x)∥⩽32ε,for allx∈X.$$\begin{equation*} \Vert F(x)-U(x)\Vert \leqslant \frac{3}{2}\varepsilon, {\text{\,for all\,}} x\in X. \end{equation*}$$The estimate 32ε$\frac{3}{2}\varepsilon$ is sharp. We also approximate standard surjective ε$\varepsilon$‐norm‐additive maps between the positive cones of continuous function spaces by linear isometries within a sharp approximation error 32ε$\frac{3}{2}\varepsilon$.</description><identifier>ISSN: 0024-6093</identifier><identifier>EISSN: 1469-2120</identifier><identifier>DOI: 10.1112/blms.13115</identifier><language>eng</language><ispartof>The Bulletin of the London Mathematical Society, 2024-09, Vol.56 (9), p.2991-3010</ispartof><rights>2024 The Author(s). The publishing rights in this article are licensed to the London Mathematical Society under an exclusive licence.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1625-42f257a76940278641afcec9fd35027f571d8e1fdd09a9acaebb6f9c969e09fd3</cites><orcidid>0000-0003-3560-7139</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1112%2Fblms.13115$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1112%2Fblms.13115$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27911,27912,45561,45562</link.rule.ids></links><search><creatorcontrib>Sun, Longfa</creatorcontrib><creatorcontrib>Cai, Gang</creatorcontrib><creatorcontrib>Zheng, Bentuo</creatorcontrib><title>Approximate norm‐additive maps on Banach spaces</title><title>The Bulletin of the London Mathematical Society</title><description>Let X,Y$X, Y$ be two Banach spaces, F:X→Y$F:X\rightarrow Y$ be an ε$\varepsilon$‐norm‐additive map for some ε⩾0$\varepsilon \geqslant 0$, that is,
|∥F(x)+F(y)∥−∥x+y∥|⩽ε,for allx,y∈X.$$\begin{equation*} \big\vert \Vert F(x)+F(y)\Vert -\Vert x+y\Vert \big\vert \leqslant \varepsilon, {\text{\,for all\,}} x,y\in X. \end{equation*}$$In this paper, we prove that if F$F$ is surjective with F(0)=0$F(0)=0$, then there exists a linear surjective isometry U:X→Y$U:X\rightarrow Y$ such that
∥F(x)−U(x)∥⩽32ε,for allx∈X.$$\begin{equation*} \Vert F(x)-U(x)\Vert \leqslant \frac{3}{2}\varepsilon, {\text{\,for all\,}} x\in X. \end{equation*}$$The estimate 32ε$\frac{3}{2}\varepsilon$ is sharp. We also approximate standard surjective ε$\varepsilon$‐norm‐additive maps between the positive cones of continuous function spaces by linear isometries within a sharp approximation error 32ε$\frac{3}{2}\varepsilon$.</description><issn>0024-6093</issn><issn>1469-2120</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9j8tKxEAQRRtRMI5u_IKshYxVnaQzvZwZfEHEhbpuKv3ASF50D-rs_AS_0S8xMa5dFVzOvdRh7BxhiYj8smrasMQUMT9gEWZCJhw5HLIIgGeJAJkes5MQXgEwhQIjhuth8P1H3dLOxl3v2-_PLzKm3tVvNm5pCHHfxRvqSL_EYSBtwyk7ctQEe_Z3F-z5-uppe5uUDzd323WZaBQ8TzLueF5QIWQGvFiJDMlpq6UzaT4GLi_QrCw6Y0CSJE22qoSTWgppYaIW7GLe1b4PwVunBj--6fcKQU2yapJVv7IjjDP8Xjd2_w-pNuX949z5ATtLWAo</recordid><startdate>202409</startdate><enddate>202409</enddate><creator>Sun, Longfa</creator><creator>Cai, Gang</creator><creator>Zheng, Bentuo</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3560-7139</orcidid></search><sort><creationdate>202409</creationdate><title>Approximate norm‐additive maps on Banach spaces</title><author>Sun, Longfa ; Cai, Gang ; Zheng, Bentuo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1625-42f257a76940278641afcec9fd35027f571d8e1fdd09a9acaebb6f9c969e09fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Longfa</creatorcontrib><creatorcontrib>Cai, Gang</creatorcontrib><creatorcontrib>Zheng, Bentuo</creatorcontrib><collection>CrossRef</collection><jtitle>The Bulletin of the London Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Longfa</au><au>Cai, Gang</au><au>Zheng, Bentuo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Approximate norm‐additive maps on Banach spaces</atitle><jtitle>The Bulletin of the London Mathematical Society</jtitle><date>2024-09</date><risdate>2024</risdate><volume>56</volume><issue>9</issue><spage>2991</spage><epage>3010</epage><pages>2991-3010</pages><issn>0024-6093</issn><eissn>1469-2120</eissn><abstract>Let X,Y$X, Y$ be two Banach spaces, F:X→Y$F:X\rightarrow Y$ be an ε$\varepsilon$‐norm‐additive map for some ε⩾0$\varepsilon \geqslant 0$, that is,
|∥F(x)+F(y)∥−∥x+y∥|⩽ε,for allx,y∈X.$$\begin{equation*} \big\vert \Vert F(x)+F(y)\Vert -\Vert x+y\Vert \big\vert \leqslant \varepsilon, {\text{\,for all\,}} x,y\in X. \end{equation*}$$In this paper, we prove that if F$F$ is surjective with F(0)=0$F(0)=0$, then there exists a linear surjective isometry U:X→Y$U:X\rightarrow Y$ such that
∥F(x)−U(x)∥⩽32ε,for allx∈X.$$\begin{equation*} \Vert F(x)-U(x)\Vert \leqslant \frac{3}{2}\varepsilon, {\text{\,for all\,}} x\in X. \end{equation*}$$The estimate 32ε$\frac{3}{2}\varepsilon$ is sharp. We also approximate standard surjective ε$\varepsilon$‐norm‐additive maps between the positive cones of continuous function spaces by linear isometries within a sharp approximation error 32ε$\frac{3}{2}\varepsilon$.</abstract><doi>10.1112/blms.13115</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0003-3560-7139</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0024-6093 |
ispartof | The Bulletin of the London Mathematical Society, 2024-09, Vol.56 (9), p.2991-3010 |
issn | 0024-6093 1469-2120 |
language | eng |
recordid | cdi_crossref_primary_10_1112_blms_13115 |
source | Wiley Online Library Journals Frontfile Complete |
title | Approximate norm‐additive maps on Banach spaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T20%3A03%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Approximate%20norm%E2%80%90additive%20maps%20on%20Banach%20spaces&rft.jtitle=The%20Bulletin%20of%20the%20London%20Mathematical%20Society&rft.au=Sun,%20Longfa&rft.date=2024-09&rft.volume=56&rft.issue=9&rft.spage=2991&rft.epage=3010&rft.pages=2991-3010&rft.issn=0024-6093&rft.eissn=1469-2120&rft_id=info:doi/10.1112/blms.13115&rft_dat=%3Cwiley_cross%3EBLMS13115%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |