Approximate norm‐additive maps on Banach spaces

Let X,Y$X, Y$ be two Banach spaces, F:X→Y$F:X\rightarrow Y$ be an ε$\varepsilon$‐norm‐additive map for some ε⩾0$\varepsilon \geqslant 0$, that is, |∥F(x)+F(y)∥−∥x+y∥|⩽ε,for allx,y∈X.$$\begin{equation*} \big\vert \Vert F(x)+F(y)\Vert -\Vert x+y\Vert \big\vert \leqslant \varepsilon, {\text{\,for all\,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Bulletin of the London Mathematical Society 2024-09, Vol.56 (9), p.2991-3010
Hauptverfasser: Sun, Longfa, Cai, Gang, Zheng, Bentuo
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let X,Y$X, Y$ be two Banach spaces, F:X→Y$F:X\rightarrow Y$ be an ε$\varepsilon$‐norm‐additive map for some ε⩾0$\varepsilon \geqslant 0$, that is, |∥F(x)+F(y)∥−∥x+y∥|⩽ε,for allx,y∈X.$$\begin{equation*} \big\vert \Vert F(x)+F(y)\Vert -\Vert x+y\Vert \big\vert \leqslant \varepsilon, {\text{\,for all\,}} x,y\in X. \end{equation*}$$In this paper, we prove that if F$F$ is surjective with F(0)=0$F(0)=0$, then there exists a linear surjective isometry U:X→Y$U:X\rightarrow Y$ such that ∥F(x)−U(x)∥⩽32ε,for allx∈X.$$\begin{equation*} \Vert F(x)-U(x)\Vert \leqslant \frac{3}{2}\varepsilon, {\text{\,for all\,}} x\in X. \end{equation*}$$The estimate 32ε$\frac{3}{2}\varepsilon$ is sharp. We also approximate standard surjective ε$\varepsilon$‐norm‐additive maps between the positive cones of continuous function spaces by linear isometries within a sharp approximation error 32ε$\frac{3}{2}\varepsilon$.
ISSN:0024-6093
1469-2120
DOI:10.1112/blms.13115