Properties of the Cremona group endowed with the Euclidean topology
Consider a Cremona group endowed with the Euclidean topology introduced by Blanc and Furter. It makes it a Hausdorff topological group that is not locally compact nor metrisable. We show that any sequence of elements of the Cremona group of bounded order that converges to the identity is constant. W...
Gespeichert in:
Veröffentlicht in: | The Bulletin of the London Mathematical Society 2023-08, Vol.55 (4), p.1817-1836 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Consider a Cremona group endowed with the Euclidean topology introduced by Blanc and Furter. It makes it a Hausdorff topological group that is not locally compact nor metrisable. We show that any sequence of elements of the Cremona group of bounded order that converges to the identity is constant. We use this result to show that Cremona groups do not contain any non‐stationary sequence of subgroups converging to the identity. We also show that, in general, paths in a Cremona group do not lift and do not satisfy a property similar to the definition of morphisms to a Cremona group. |
---|---|
ISSN: | 0024-6093 1469-2120 |
DOI: | 10.1112/blms.12821 |