On the eigenvalues of the biharmonic operator with Neumann boundary conditions on a thin set
Let Ω$\Omega$ be a bounded domain in R2$\mathbb {R}^2$ with smooth boundary ∂Ω$\partial \Omega$, and let ωh$\omega _h$ be the set of points in Ω$\Omega$ whose distance from the boundary is smaller than h$h$. We prove that the eigenvalues of the biharmonic operator on ωh$\omega _h$ with Neumann bound...
Gespeichert in:
Veröffentlicht in: | The Bulletin of the London Mathematical Society 2023-06, Vol.55 (3), p.1154-1177, Article 1154 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let Ω$\Omega$ be a bounded domain in R2$\mathbb {R}^2$ with smooth boundary ∂Ω$\partial \Omega$, and let ωh$\omega _h$ be the set of points in Ω$\Omega$ whose distance from the boundary is smaller than h$h$. We prove that the eigenvalues of the biharmonic operator on ωh$\omega _h$ with Neumann boundary conditions converge to the eigenvalues of a limiting problem in the form of a system of differential equations on ∂Ω$\partial \Omega$. |
---|---|
ISSN: | 0024-6093 1469-2120 |
DOI: | 10.1112/blms.12781 |