On the eigenvalues of the biharmonic operator with Neumann boundary conditions on a thin set

Let Ω$\Omega$ be a bounded domain in R2$\mathbb {R}^2$ with smooth boundary ∂Ω$\partial \Omega$, and let ωh$\omega _h$ be the set of points in Ω$\Omega$ whose distance from the boundary is smaller than h$h$. We prove that the eigenvalues of the biharmonic operator on ωh$\omega _h$ with Neumann bound...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Bulletin of the London Mathematical Society 2023-06, Vol.55 (3), p.1154-1177, Article 1154
Hauptverfasser: Ferraresso, Francesco, Provenzano, Luigi
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let Ω$\Omega$ be a bounded domain in R2$\mathbb {R}^2$ with smooth boundary ∂Ω$\partial \Omega$, and let ωh$\omega _h$ be the set of points in Ω$\Omega$ whose distance from the boundary is smaller than h$h$. We prove that the eigenvalues of the biharmonic operator on ωh$\omega _h$ with Neumann boundary conditions converge to the eigenvalues of a limiting problem in the form of a system of differential equations on ∂Ω$\partial \Omega$.
ISSN:0024-6093
1469-2120
DOI:10.1112/blms.12781