The trigonal construction in the ramified case
To every double cover ramified in two points of a general trigonal curve of genus g$g$, one can associate an étale double cover of a tetragonal curve of genus g+1$g+1$. We show that the corresponding Prym varieties are canonically isomorphic as principally polarized abelian varieties. This extends R...
Gespeichert in:
Veröffentlicht in: | The Bulletin of the London Mathematical Society 2023-04, Vol.55 (2), p.777-792 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To every double cover ramified in two points of a general trigonal curve of genus g$g$, one can associate an étale double cover of a tetragonal curve of genus g+1$g+1$. We show that the corresponding Prym varieties are canonically isomorphic as principally polarized abelian varieties. This extends Recillas' trigonal construction to covers ramified in two points. |
---|---|
ISSN: | 0024-6093 1469-2120 |
DOI: | 10.1112/blms.12756 |