The trigonal construction in the ramified case

To every double cover ramified in two points of a general trigonal curve of genus g$g$, one can associate an étale double cover of a tetragonal curve of genus g+1$g+1$. We show that the corresponding Prym varieties are canonically isomorphic as principally polarized abelian varieties. This extends R...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Bulletin of the London Mathematical Society 2023-04, Vol.55 (2), p.777-792
Hauptverfasser: Lange, Herbert, Ortega, Angela
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To every double cover ramified in two points of a general trigonal curve of genus g$g$, one can associate an étale double cover of a tetragonal curve of genus g+1$g+1$. We show that the corresponding Prym varieties are canonically isomorphic as principally polarized abelian varieties. This extends Recillas' trigonal construction to covers ramified in two points.
ISSN:0024-6093
1469-2120
DOI:10.1112/blms.12756