Concavity of solutions to semilinear equations in dimension two

We consider the Dirichlet problem for a class of semilinear equations on two‐ dimensional convex domains. We give a sufficient condition for the solution to be concave. Our condition uses comparison with ellipses, and is motivated by an idea of Kosmodem'yanskii. We also prove a result on propag...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Bulletin of the London Mathematical Society 2023-04, Vol.55 (2), p.706-716
Hauptverfasser: Chau, Albert, Weinkove, Ben
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the Dirichlet problem for a class of semilinear equations on two‐ dimensional convex domains. We give a sufficient condition for the solution to be concave. Our condition uses comparison with ellipses, and is motivated by an idea of Kosmodem'yanskii. We also prove a result on propagation of concavity of solutions from the boundary, which holds in all dimensions.
ISSN:0024-6093
1469-2120
DOI:10.1112/blms.12750