Hyperbolic limits of cantor set complements in the sphere
Let M$M$ be a hyperbolic 3‐manifold with no rank two cusps admitting an embedding in S3$\mathbb {S}^3$. Then, if M$M$ admits an exhaustion by π1$\pi _1$‐injective sub‐manifolds there exists Cantor sets Cn⊆S3$C_n\subseteq \mathbb {S}^3$ such that Nn=S3∖Cn$N_n=\mathbb {S}^3\setminus C_n$ is hyperbolic...
Gespeichert in:
Veröffentlicht in: | The Bulletin of the London Mathematical Society 2022-06, Vol.54 (3), p.1104-1119, Article 1104 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let M$M$ be a hyperbolic 3‐manifold with no rank two cusps admitting an embedding in S3$\mathbb {S}^3$. Then, if M$M$ admits an exhaustion by π1$\pi _1$‐injective sub‐manifolds there exists Cantor sets Cn⊆S3$C_n\subseteq \mathbb {S}^3$ such that Nn=S3∖Cn$N_n=\mathbb {S}^3\setminus C_n$ is hyperbolic and Nn→M$N_n\rightarrow M$ geometrically. |
---|---|
ISSN: | 0024-6093 1469-2120 |
DOI: | 10.1112/blms.12617 |