Sylow branching coefficients and a conjecture of Malle and Navarro
We prove that a finite group G$G$ has a normal Sylow p$p$‐subgroup P$P$ if, and only if, every irreducible character of G$G$ appearing in the permutation character (1P)G$({\bf 1}_P)^G$ with multiplicity coprime to p$p$ has degree coprime to p$p$. This confirms a prediction by Malle and Navarro from...
Gespeichert in:
Veröffentlicht in: | The Bulletin of the London Mathematical Society 2022-04, Vol.54 (2), p.552-567 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 567 |
---|---|
container_issue | 2 |
container_start_page | 552 |
container_title | The Bulletin of the London Mathematical Society |
container_volume | 54 |
creator | Giannelli, Eugenio Law, Stacey Long, Jason Vallejo, Carolina |
description | We prove that a finite group G$G$ has a normal Sylow p$p$‐subgroup P$P$ if, and only if, every irreducible character of G$G$ appearing in the permutation character (1P)G$({\bf 1}_P)^G$ with multiplicity coprime to p$p$ has degree coprime to p$p$. This confirms a prediction by Malle and Navarro from 2012. Our proof of the above result depends on a reduction to simple groups and ultimately on a combinatorial analysis of the properties of Sylow branching coefficients for symmetric groups. |
doi_str_mv | 10.1112/blms.12584 |
format | Article |
fullrecord | <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1112_blms_12584</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>BLMS12584</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2734-1aabdb70b7b21a495b7903d15ec7f1e7d4ad2058573e4eea2a9ff02c3f36c8583</originalsourceid><addsrcrecordid>eNp9j8tOwzAQRS0EEqGw4QuyRkqZsZ04WdKKl9TCorCOxs4YUqUJsgtV_54-WLMa6c65VzpCXCOMEVHe2m4VxyjzUp-IBHVRZRIlnIoEQOqsgEqdi4sYlwCowGAiJottN2xSG6h3n23_kbqBvW9dy_06ptQ3Ke2ifslu_R04HXw6p67jw-eFfiiE4VKceeoiX_3dkXh_uH-bPmWz18fn6d0sc9IonSGRbawBa6xE0lVuTQWqwZyd8cim0dRIyMvcKNbMJKnyHqRTXhWuzEs1EjfHXReGGAP7-iu0KwrbGqHe29d7-_pgv4PxCG_ajrf_kPVkNl8cO79evV0a</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Sylow branching coefficients and a conjecture of Malle and Navarro</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Giannelli, Eugenio ; Law, Stacey ; Long, Jason ; Vallejo, Carolina</creator><creatorcontrib>Giannelli, Eugenio ; Law, Stacey ; Long, Jason ; Vallejo, Carolina</creatorcontrib><description>We prove that a finite group G$G$ has a normal Sylow p$p$‐subgroup P$P$ if, and only if, every irreducible character of G$G$ appearing in the permutation character (1P)G$({\bf 1}_P)^G$ with multiplicity coprime to p$p$ has degree coprime to p$p$. This confirms a prediction by Malle and Navarro from 2012. Our proof of the above result depends on a reduction to simple groups and ultimately on a combinatorial analysis of the properties of Sylow branching coefficients for symmetric groups.</description><identifier>ISSN: 0024-6093</identifier><identifier>EISSN: 1469-2120</identifier><identifier>DOI: 10.1112/blms.12584</identifier><language>eng</language><ispartof>The Bulletin of the London Mathematical Society, 2022-04, Vol.54 (2), p.552-567</ispartof><rights>2022 The Authors. is copyright © London Mathematical Society.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2734-1aabdb70b7b21a495b7903d15ec7f1e7d4ad2058573e4eea2a9ff02c3f36c8583</citedby><cites>FETCH-LOGICAL-c2734-1aabdb70b7b21a495b7903d15ec7f1e7d4ad2058573e4eea2a9ff02c3f36c8583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1112%2Fblms.12584$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1112%2Fblms.12584$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Giannelli, Eugenio</creatorcontrib><creatorcontrib>Law, Stacey</creatorcontrib><creatorcontrib>Long, Jason</creatorcontrib><creatorcontrib>Vallejo, Carolina</creatorcontrib><title>Sylow branching coefficients and a conjecture of Malle and Navarro</title><title>The Bulletin of the London Mathematical Society</title><description>We prove that a finite group G$G$ has a normal Sylow p$p$‐subgroup P$P$ if, and only if, every irreducible character of G$G$ appearing in the permutation character (1P)G$({\bf 1}_P)^G$ with multiplicity coprime to p$p$ has degree coprime to p$p$. This confirms a prediction by Malle and Navarro from 2012. Our proof of the above result depends on a reduction to simple groups and ultimately on a combinatorial analysis of the properties of Sylow branching coefficients for symmetric groups.</description><issn>0024-6093</issn><issn>1469-2120</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp9j8tOwzAQRS0EEqGw4QuyRkqZsZ04WdKKl9TCorCOxs4YUqUJsgtV_54-WLMa6c65VzpCXCOMEVHe2m4VxyjzUp-IBHVRZRIlnIoEQOqsgEqdi4sYlwCowGAiJottN2xSG6h3n23_kbqBvW9dy_06ptQ3Ke2ifslu_R04HXw6p67jw-eFfiiE4VKceeoiX_3dkXh_uH-bPmWz18fn6d0sc9IonSGRbawBa6xE0lVuTQWqwZyd8cim0dRIyMvcKNbMJKnyHqRTXhWuzEs1EjfHXReGGAP7-iu0KwrbGqHe29d7-_pgv4PxCG_ajrf_kPVkNl8cO79evV0a</recordid><startdate>202204</startdate><enddate>202204</enddate><creator>Giannelli, Eugenio</creator><creator>Law, Stacey</creator><creator>Long, Jason</creator><creator>Vallejo, Carolina</creator><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202204</creationdate><title>Sylow branching coefficients and a conjecture of Malle and Navarro</title><author>Giannelli, Eugenio ; Law, Stacey ; Long, Jason ; Vallejo, Carolina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2734-1aabdb70b7b21a495b7903d15ec7f1e7d4ad2058573e4eea2a9ff02c3f36c8583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Giannelli, Eugenio</creatorcontrib><creatorcontrib>Law, Stacey</creatorcontrib><creatorcontrib>Long, Jason</creatorcontrib><creatorcontrib>Vallejo, Carolina</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><jtitle>The Bulletin of the London Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Giannelli, Eugenio</au><au>Law, Stacey</au><au>Long, Jason</au><au>Vallejo, Carolina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sylow branching coefficients and a conjecture of Malle and Navarro</atitle><jtitle>The Bulletin of the London Mathematical Society</jtitle><date>2022-04</date><risdate>2022</risdate><volume>54</volume><issue>2</issue><spage>552</spage><epage>567</epage><pages>552-567</pages><issn>0024-6093</issn><eissn>1469-2120</eissn><abstract>We prove that a finite group G$G$ has a normal Sylow p$p$‐subgroup P$P$ if, and only if, every irreducible character of G$G$ appearing in the permutation character (1P)G$({\bf 1}_P)^G$ with multiplicity coprime to p$p$ has degree coprime to p$p$. This confirms a prediction by Malle and Navarro from 2012. Our proof of the above result depends on a reduction to simple groups and ultimately on a combinatorial analysis of the properties of Sylow branching coefficients for symmetric groups.</abstract><doi>10.1112/blms.12584</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0024-6093 |
ispartof | The Bulletin of the London Mathematical Society, 2022-04, Vol.54 (2), p.552-567 |
issn | 0024-6093 1469-2120 |
language | eng |
recordid | cdi_crossref_primary_10_1112_blms_12584 |
source | Wiley Online Library Journals Frontfile Complete |
title | Sylow branching coefficients and a conjecture of Malle and Navarro |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T11%3A06%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sylow%20branching%20coefficients%20and%20a%20conjecture%20of%20Malle%20and%20Navarro&rft.jtitle=The%20Bulletin%20of%20the%20London%20Mathematical%20Society&rft.au=Giannelli,%20Eugenio&rft.date=2022-04&rft.volume=54&rft.issue=2&rft.spage=552&rft.epage=567&rft.pages=552-567&rft.issn=0024-6093&rft.eissn=1469-2120&rft_id=info:doi/10.1112/blms.12584&rft_dat=%3Cwiley_cross%3EBLMS12584%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |