Sylow branching coefficients and a conjecture of Malle and Navarro
We prove that a finite group G$G$ has a normal Sylow p$p$‐subgroup P$P$ if, and only if, every irreducible character of G$G$ appearing in the permutation character (1P)G$({\bf 1}_P)^G$ with multiplicity coprime to p$p$ has degree coprime to p$p$. This confirms a prediction by Malle and Navarro from...
Gespeichert in:
Veröffentlicht in: | The Bulletin of the London Mathematical Society 2022-04, Vol.54 (2), p.552-567 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove that a finite group G$G$ has a normal Sylow p$p$‐subgroup P$P$ if, and only if, every irreducible character of G$G$ appearing in the permutation character (1P)G$({\bf 1}_P)^G$ with multiplicity coprime to p$p$ has degree coprime to p$p$. This confirms a prediction by Malle and Navarro from 2012. Our proof of the above result depends on a reduction to simple groups and ultimately on a combinatorial analysis of the properties of Sylow branching coefficients for symmetric groups. |
---|---|
ISSN: | 0024-6093 1469-2120 |
DOI: | 10.1112/blms.12584 |