Sylow branching coefficients and a conjecture of Malle and Navarro

We prove that a finite group G$G$ has a normal Sylow p$p$‐subgroup P$P$ if, and only if, every irreducible character of G$G$ appearing in the permutation character (1P)G$({\bf 1}_P)^G$ with multiplicity coprime to p$p$ has degree coprime to p$p$. This confirms a prediction by Malle and Navarro from...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Bulletin of the London Mathematical Society 2022-04, Vol.54 (2), p.552-567
Hauptverfasser: Giannelli, Eugenio, Law, Stacey, Long, Jason, Vallejo, Carolina
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove that a finite group G$G$ has a normal Sylow p$p$‐subgroup P$P$ if, and only if, every irreducible character of G$G$ appearing in the permutation character (1P)G$({\bf 1}_P)^G$ with multiplicity coprime to p$p$ has degree coprime to p$p$. This confirms a prediction by Malle and Navarro from 2012. Our proof of the above result depends on a reduction to simple groups and ultimately on a combinatorial analysis of the properties of Sylow branching coefficients for symmetric groups.
ISSN:0024-6093
1469-2120
DOI:10.1112/blms.12584