A geometric approach to Wigner‐type theorems

Let H be a complex Hilbert space and let P(H) be the associated projective space (the set of rank‐one projections). Suppose dimH⩾3. We prove the following Wigner‐type theorem: if H is finite dimensional, then every orthogonality preserving transformation of P(H) is induced by a unitary or anti‐unita...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Bulletin of the London Mathematical Society 2021-12, Vol.53 (6), p.1653-1662
Hauptverfasser: Pankov, Mark, Vetterlein, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let H be a complex Hilbert space and let P(H) be the associated projective space (the set of rank‐one projections). Suppose dimH⩾3. We prove the following Wigner‐type theorem: if H is finite dimensional, then every orthogonality preserving transformation of P(H) is induced by a unitary or anti‐unitary operator. This statement will be obtained as a consequence of the following result: every orthogonality preserving lineation of P(H) to itself is induced by a linear or conjugate‐linear isometry (H is not assumed to be finite‐dimensional). As an application, we describe (not necessarily injective) transformations of Grassmannians preserving some types of principal angles.
ISSN:0024-6093
1469-2120
DOI:10.1112/blms.12517