A geometric approach to Wigner‐type theorems
Let H be a complex Hilbert space and let P(H) be the associated projective space (the set of rank‐one projections). Suppose dimH⩾3. We prove the following Wigner‐type theorem: if H is finite dimensional, then every orthogonality preserving transformation of P(H) is induced by a unitary or anti‐unita...
Gespeichert in:
Veröffentlicht in: | The Bulletin of the London Mathematical Society 2021-12, Vol.53 (6), p.1653-1662 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let H be a complex Hilbert space and let P(H) be the associated projective space (the set of rank‐one projections). Suppose dimH⩾3. We prove the following Wigner‐type theorem: if H is finite dimensional, then every orthogonality preserving transformation of P(H) is induced by a unitary or anti‐unitary operator. This statement will be obtained as a consequence of the following result: every orthogonality preserving lineation of P(H) to itself is induced by a linear or conjugate‐linear isometry (H is not assumed to be finite‐dimensional). As an application, we describe (not necessarily injective) transformations of Grassmannians preserving some types of principal angles. |
---|---|
ISSN: | 0024-6093 1469-2120 |
DOI: | 10.1112/blms.12517 |