Random continuum and Brownian motion
We describe a probabilistic model involving iterated Brownian motion for constructing a random chainable continuum. We show that this random continuum is indecomposable. We use our probabilistic model to define a Wiener‐type measure on the space of all chainable continua.
Gespeichert in:
Veröffentlicht in: | The Bulletin of the London Mathematical Society 2021-10, Vol.53 (5), p.1376-1389 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1389 |
---|---|
container_issue | 5 |
container_start_page | 1376 |
container_title | The Bulletin of the London Mathematical Society |
container_volume | 53 |
creator | Kiss, Viktor Solecki, Sławomir |
description | We describe a probabilistic model involving iterated Brownian motion for constructing a random chainable continuum. We show that this random continuum is indecomposable. We use our probabilistic model to define a Wiener‐type measure on the space of all chainable continua. |
doi_str_mv | 10.1112/blms.12504 |
format | Article |
fullrecord | <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1112_blms_12504</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>BLMS12504</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2324-db5e85350fdb3f708a78f2d947f1c67ef1f26aef72aac054ef21a3ce06886fe03</originalsourceid><addsrcrecordid>eNp9j01LxDAURYMoWEc3_oIuXAkd30vapF06g6NCRfBjHdI0DyptIs0Mw_x7O9a1q8uFcy8cxq4RlojI75p-iEvkBeQnLMFcVhlHDqcsAeB5JqES5-wixi8AFKAwYTdvxrdhSG3w287vdkM69XQ1hr3vjE-HsO2Cv2RnZProrv5ywT43Dx_rp6x-fXxe39eZ5WK6b5vClYUogNpGkILSqJJ4W-WK0ErlCIlL40hxYywUuSOORlgHsiwlORALdjv_2jHEODrS32M3mPGgEfTRTx_99K_fBOMM77veHf4h9ap-eZ83P2n0Unk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Random continuum and Brownian motion</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Kiss, Viktor ; Solecki, Sławomir</creator><creatorcontrib>Kiss, Viktor ; Solecki, Sławomir</creatorcontrib><description>We describe a probabilistic model involving iterated Brownian motion for constructing a random chainable continuum. We show that this random continuum is indecomposable. We use our probabilistic model to define a Wiener‐type measure on the space of all chainable continua.</description><identifier>ISSN: 0024-6093</identifier><identifier>EISSN: 1469-2120</identifier><identifier>DOI: 10.1112/blms.12504</identifier><language>eng</language><subject>54F15 ; 60J65 ; 60J70 (primary)</subject><ispartof>The Bulletin of the London Mathematical Society, 2021-10, Vol.53 (5), p.1376-1389</ispartof><rights>2021 The Authors. The publishing rights in this article are licensed to the London Mathematical Society under an exclusive licence.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2324-db5e85350fdb3f708a78f2d947f1c67ef1f26aef72aac054ef21a3ce06886fe03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1112%2Fblms.12504$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1112%2Fblms.12504$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Kiss, Viktor</creatorcontrib><creatorcontrib>Solecki, Sławomir</creatorcontrib><title>Random continuum and Brownian motion</title><title>The Bulletin of the London Mathematical Society</title><description>We describe a probabilistic model involving iterated Brownian motion for constructing a random chainable continuum. We show that this random continuum is indecomposable. We use our probabilistic model to define a Wiener‐type measure on the space of all chainable continua.</description><subject>54F15</subject><subject>60J65</subject><subject>60J70 (primary)</subject><issn>0024-6093</issn><issn>1469-2120</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9j01LxDAURYMoWEc3_oIuXAkd30vapF06g6NCRfBjHdI0DyptIs0Mw_x7O9a1q8uFcy8cxq4RlojI75p-iEvkBeQnLMFcVhlHDqcsAeB5JqES5-wixi8AFKAwYTdvxrdhSG3w287vdkM69XQ1hr3vjE-HsO2Cv2RnZProrv5ywT43Dx_rp6x-fXxe39eZ5WK6b5vClYUogNpGkILSqJJ4W-WK0ErlCIlL40hxYywUuSOORlgHsiwlORALdjv_2jHEODrS32M3mPGgEfTRTx_99K_fBOMM77veHf4h9ap-eZ83P2n0Unk</recordid><startdate>202110</startdate><enddate>202110</enddate><creator>Kiss, Viktor</creator><creator>Solecki, Sławomir</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202110</creationdate><title>Random continuum and Brownian motion</title><author>Kiss, Viktor ; Solecki, Sławomir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2324-db5e85350fdb3f708a78f2d947f1c67ef1f26aef72aac054ef21a3ce06886fe03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>54F15</topic><topic>60J65</topic><topic>60J70 (primary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kiss, Viktor</creatorcontrib><creatorcontrib>Solecki, Sławomir</creatorcontrib><collection>CrossRef</collection><jtitle>The Bulletin of the London Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kiss, Viktor</au><au>Solecki, Sławomir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Random continuum and Brownian motion</atitle><jtitle>The Bulletin of the London Mathematical Society</jtitle><date>2021-10</date><risdate>2021</risdate><volume>53</volume><issue>5</issue><spage>1376</spage><epage>1389</epage><pages>1376-1389</pages><issn>0024-6093</issn><eissn>1469-2120</eissn><abstract>We describe a probabilistic model involving iterated Brownian motion for constructing a random chainable continuum. We show that this random continuum is indecomposable. We use our probabilistic model to define a Wiener‐type measure on the space of all chainable continua.</abstract><doi>10.1112/blms.12504</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0024-6093 |
ispartof | The Bulletin of the London Mathematical Society, 2021-10, Vol.53 (5), p.1376-1389 |
issn | 0024-6093 1469-2120 |
language | eng |
recordid | cdi_crossref_primary_10_1112_blms_12504 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | 54F15 60J65 60J70 (primary) |
title | Random continuum and Brownian motion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T21%3A09%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Random%20continuum%20and%20Brownian%20motion&rft.jtitle=The%20Bulletin%20of%20the%20London%20Mathematical%20Society&rft.au=Kiss,%20Viktor&rft.date=2021-10&rft.volume=53&rft.issue=5&rft.spage=1376&rft.epage=1389&rft.pages=1376-1389&rft.issn=0024-6093&rft.eissn=1469-2120&rft_id=info:doi/10.1112/blms.12504&rft_dat=%3Cwiley_cross%3EBLMS12504%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |