The Gieseker–Petri theorem and imposed ramification
We prove a smoothness result for spaces of linear series with prescribed ramification on twice‐marked elliptic curves. In characteristic 0, we then apply the Eisenbud–Harris theory of limit linear series to deduce a new proof of the Gieseker–Petri theorem, along with a generalization to spaces of li...
Gespeichert in:
Veröffentlicht in: | The Bulletin of the London Mathematical Society 2019-12, Vol.51 (6), p.945-960 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove a smoothness result for spaces of linear series with prescribed ramification on twice‐marked elliptic curves. In characteristic 0, we then apply the Eisenbud–Harris theory of limit linear series to deduce a new proof of the Gieseker–Petri theorem, along with a generalization to spaces of linear series with prescribed ramification at up to two points. Our main calculation involves the intersection of two Schubert cycles in a Grassmannian associated to almost‐transverse flags. |
---|---|
ISSN: | 0024-6093 1469-2120 |
DOI: | 10.1112/blms.12273 |