The Gieseker–Petri theorem and imposed ramification

We prove a smoothness result for spaces of linear series with prescribed ramification on twice‐marked elliptic curves. In characteristic 0, we then apply the Eisenbud–Harris theory of limit linear series to deduce a new proof of the Gieseker–Petri theorem, along with a generalization to spaces of li...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Bulletin of the London Mathematical Society 2019-12, Vol.51 (6), p.945-960
Hauptverfasser: Chan, Melody, Osserman, Brian, Pflueger, Nathan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove a smoothness result for spaces of linear series with prescribed ramification on twice‐marked elliptic curves. In characteristic 0, we then apply the Eisenbud–Harris theory of limit linear series to deduce a new proof of the Gieseker–Petri theorem, along with a generalization to spaces of linear series with prescribed ramification at up to two points. Our main calculation involves the intersection of two Schubert cycles in a Grassmannian associated to almost‐transverse flags.
ISSN:0024-6093
1469-2120
DOI:10.1112/blms.12273