On the complex Monge–Ampère operator for quasi‐plurisubharmonic functions with analytic singularities
We give a modified, very natural definition for the complex Monge–Ampère operator for an ω‐plurisubharmonic (psh) function φ with analytic singularities on a Kähler manifold (X,ω) of dimension n which has the property ∫X(ω+ddcφ)n=∫Xωn if X is compact. This means that, unlike in the previous definiti...
Gespeichert in:
Veröffentlicht in: | The Bulletin of the London Mathematical Society 2019-06, Vol.51 (3), p.431-435 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 435 |
---|---|
container_issue | 3 |
container_start_page | 431 |
container_title | The Bulletin of the London Mathematical Society |
container_volume | 51 |
creator | Błocki, Zbigniew |
description | We give a modified, very natural definition for the complex Monge–Ampère operator for an ω‐plurisubharmonic (psh) function φ with analytic singularities on a Kähler manifold (X,ω) of dimension n which has the property ∫X(ω+ddcφ)n=∫Xωn if X is compact. This means that, unlike in the previous definition, no mass is lost here. In fact, the definition works for any smooth (1,1)‐form ω (we need neither closedness nor positivity) and quasi‐psh φ with analytic singularities. |
doi_str_mv | 10.1112/blms.12239 |
format | Article |
fullrecord | <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1112_blms_12239</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>BLMS12239</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2739-2c81039e1a7d522e3ab066e51bc34e9e2989a966ccf1da36114642054d0f3aee3</originalsourceid><addsrcrecordid>eNp9kMFOAjEQhhujiYhefIKeTRY77VLoEYmiCYSDet50yyyU7G7XdjfIjUcw8SV8D9-EJ3ERzx4mk0y-mcz_EXINrAcA_DbNi9ADzoU6IR2IpYo4cHZKOozxOJJMiXNyEcKaMRBsAB2ynpe0XiE1rqhyfKczVy5xv_scFdX3l0fqKvS6dp5mbb01Otj97qPKG29Dk660L1xpDc2a0tTWlYFubL2iutT5tm7nwZbLJtfe1hbDJTnLdB7w6q93yevD_cv4MZrOJ0_j0TQyfCDah80QmFAIerDoc45Cp0xK7ENqRIwKuRoqraQ0JoOFFhLamDFn_XjBMqERRZfcHO8a70LwmCWVt4X22wRYcrCUHCwlv5ZaGI7wxua4_YdM7qaz5-POD6zQb4Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the complex Monge–Ampère operator for quasi‐plurisubharmonic functions with analytic singularities</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Błocki, Zbigniew</creator><creatorcontrib>Błocki, Zbigniew</creatorcontrib><description>We give a modified, very natural definition for the complex Monge–Ampère operator for an ω‐plurisubharmonic (psh) function φ with analytic singularities on a Kähler manifold (X,ω) of dimension n which has the property ∫X(ω+ddcφ)n=∫Xωn if X is compact. This means that, unlike in the previous definition, no mass is lost here. In fact, the definition works for any smooth (1,1)‐form ω (we need neither closedness nor positivity) and quasi‐psh φ with analytic singularities.</description><identifier>ISSN: 0024-6093</identifier><identifier>EISSN: 1469-2120</identifier><identifier>DOI: 10.1112/blms.12239</identifier><language>eng</language><subject>32Q15 ; 32S05 (secondary) ; 32U05 (primary) ; 32W20</subject><ispartof>The Bulletin of the London Mathematical Society, 2019-06, Vol.51 (3), p.431-435</ispartof><rights>2019 London Mathematical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2739-2c81039e1a7d522e3ab066e51bc34e9e2989a966ccf1da36114642054d0f3aee3</citedby><cites>FETCH-LOGICAL-c2739-2c81039e1a7d522e3ab066e51bc34e9e2989a966ccf1da36114642054d0f3aee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1112%2Fblms.12239$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1112%2Fblms.12239$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Błocki, Zbigniew</creatorcontrib><title>On the complex Monge–Ampère operator for quasi‐plurisubharmonic functions with analytic singularities</title><title>The Bulletin of the London Mathematical Society</title><description>We give a modified, very natural definition for the complex Monge–Ampère operator for an ω‐plurisubharmonic (psh) function φ with analytic singularities on a Kähler manifold (X,ω) of dimension n which has the property ∫X(ω+ddcφ)n=∫Xωn if X is compact. This means that, unlike in the previous definition, no mass is lost here. In fact, the definition works for any smooth (1,1)‐form ω (we need neither closedness nor positivity) and quasi‐psh φ with analytic singularities.</description><subject>32Q15</subject><subject>32S05 (secondary)</subject><subject>32U05 (primary)</subject><subject>32W20</subject><issn>0024-6093</issn><issn>1469-2120</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kMFOAjEQhhujiYhefIKeTRY77VLoEYmiCYSDet50yyyU7G7XdjfIjUcw8SV8D9-EJ3ERzx4mk0y-mcz_EXINrAcA_DbNi9ADzoU6IR2IpYo4cHZKOozxOJJMiXNyEcKaMRBsAB2ynpe0XiE1rqhyfKczVy5xv_scFdX3l0fqKvS6dp5mbb01Otj97qPKG29Dk660L1xpDc2a0tTWlYFubL2iutT5tm7nwZbLJtfe1hbDJTnLdB7w6q93yevD_cv4MZrOJ0_j0TQyfCDah80QmFAIerDoc45Cp0xK7ENqRIwKuRoqraQ0JoOFFhLamDFn_XjBMqERRZfcHO8a70LwmCWVt4X22wRYcrCUHCwlv5ZaGI7wxua4_YdM7qaz5-POD6zQb4Y</recordid><startdate>201906</startdate><enddate>201906</enddate><creator>Błocki, Zbigniew</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201906</creationdate><title>On the complex Monge–Ampère operator for quasi‐plurisubharmonic functions with analytic singularities</title><author>Błocki, Zbigniew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2739-2c81039e1a7d522e3ab066e51bc34e9e2989a966ccf1da36114642054d0f3aee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>32Q15</topic><topic>32S05 (secondary)</topic><topic>32U05 (primary)</topic><topic>32W20</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Błocki, Zbigniew</creatorcontrib><collection>CrossRef</collection><jtitle>The Bulletin of the London Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Błocki, Zbigniew</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the complex Monge–Ampère operator for quasi‐plurisubharmonic functions with analytic singularities</atitle><jtitle>The Bulletin of the London Mathematical Society</jtitle><date>2019-06</date><risdate>2019</risdate><volume>51</volume><issue>3</issue><spage>431</spage><epage>435</epage><pages>431-435</pages><issn>0024-6093</issn><eissn>1469-2120</eissn><abstract>We give a modified, very natural definition for the complex Monge–Ampère operator for an ω‐plurisubharmonic (psh) function φ with analytic singularities on a Kähler manifold (X,ω) of dimension n which has the property ∫X(ω+ddcφ)n=∫Xωn if X is compact. This means that, unlike in the previous definition, no mass is lost here. In fact, the definition works for any smooth (1,1)‐form ω (we need neither closedness nor positivity) and quasi‐psh φ with analytic singularities.</abstract><doi>10.1112/blms.12239</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0024-6093 |
ispartof | The Bulletin of the London Mathematical Society, 2019-06, Vol.51 (3), p.431-435 |
issn | 0024-6093 1469-2120 |
language | eng |
recordid | cdi_crossref_primary_10_1112_blms_12239 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | 32Q15 32S05 (secondary) 32U05 (primary) 32W20 |
title | On the complex Monge–Ampère operator for quasi‐plurisubharmonic functions with analytic singularities |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T23%3A49%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20complex%20Monge%E2%80%93Amp%C3%A8re%20operator%20for%20quasi%E2%80%90plurisubharmonic%20functions%20with%20analytic%20singularities&rft.jtitle=The%20Bulletin%20of%20the%20London%20Mathematical%20Society&rft.au=B%C5%82ocki,%20Zbigniew&rft.date=2019-06&rft.volume=51&rft.issue=3&rft.spage=431&rft.epage=435&rft.pages=431-435&rft.issn=0024-6093&rft.eissn=1469-2120&rft_id=info:doi/10.1112/blms.12239&rft_dat=%3Cwiley_cross%3EBLMS12239%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |