On the complex Monge–Ampère operator for quasi‐plurisubharmonic functions with analytic singularities
We give a modified, very natural definition for the complex Monge–Ampère operator for an ω‐plurisubharmonic (psh) function φ with analytic singularities on a Kähler manifold (X,ω) of dimension n which has the property ∫X(ω+ddcφ)n=∫Xωn if X is compact. This means that, unlike in the previous definiti...
Gespeichert in:
Veröffentlicht in: | The Bulletin of the London Mathematical Society 2019-06, Vol.51 (3), p.431-435 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We give a modified, very natural definition for the complex Monge–Ampère operator for an ω‐plurisubharmonic (psh) function φ with analytic singularities on a Kähler manifold (X,ω) of dimension n which has the property ∫X(ω+ddcφ)n=∫Xωn if X is compact. This means that, unlike in the previous definition, no mass is lost here. In fact, the definition works for any smooth (1,1)‐form ω (we need neither closedness nor positivity) and quasi‐psh φ with analytic singularities. |
---|---|
ISSN: | 0024-6093 1469-2120 |
DOI: | 10.1112/blms.12239 |