On the complex Monge–Ampère operator for quasi‐plurisubharmonic functions with analytic singularities

We give a modified, very natural definition for the complex Monge–Ampère operator for an ω‐plurisubharmonic (psh) function φ with analytic singularities on a Kähler manifold (X,ω) of dimension n which has the property ∫X(ω+ddcφ)n=∫Xωn if X is compact. This means that, unlike in the previous definiti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Bulletin of the London Mathematical Society 2019-06, Vol.51 (3), p.431-435
1. Verfasser: Błocki, Zbigniew
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We give a modified, very natural definition for the complex Monge–Ampère operator for an ω‐plurisubharmonic (psh) function φ with analytic singularities on a Kähler manifold (X,ω) of dimension n which has the property ∫X(ω+ddcφ)n=∫Xωn if X is compact. This means that, unlike in the previous definition, no mass is lost here. In fact, the definition works for any smooth (1,1)‐form ω (we need neither closedness nor positivity) and quasi‐psh φ with analytic singularities.
ISSN:0024-6093
1469-2120
DOI:10.1112/blms.12239