Cuspidal Modular Symbols are Transportable

Modular symbols of weight 2 for a congruence subgroup Γ satisfy the identity {α,γ,(α)}={β,γ(β)} for all α,β in the extended upper half plane and γ ∊ Γ. The analogue of this identity is false for modular symbols of weight greater than 2. This paper provides a definition of transportable modular symbo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:LMS journal of computation and mathematics 2001, Vol.4, p.170-181
Hauptverfasser: Stein, William A., Verrill, Helena A.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Modular symbols of weight 2 for a congruence subgroup Γ satisfy the identity {α,γ,(α)}={β,γ(β)} for all α,β in the extended upper half plane and γ ∊ Γ. The analogue of this identity is false for modular symbols of weight greater than 2. This paper provides a definition of transportable modular symbols, which are symbols for which an analogue of the above identity holds, and proves that every cuspidal symbol can be written as a transportable symbol. As a corollary, an algorithm is obtained for computing periods of cuspforms.
ISSN:1461-1570
1461-1570
DOI:10.1112/S146115700000084X