FINITE FLAT SPACES
We say that a finite metric space $X$ can be embedded almost isometrically into a class of metric spaces $C$ if for every $\unicode[STIX]{x1D716}>0$ there exists an embedding of $X$ into one of the elements of $C$ with the bi-Lipschitz distortion less than $1+\unicode[STIX]{x1D716}$ . We show tha...
Gespeichert in:
Veröffentlicht in: | Mathematika 2019, Vol.65 (4), p.1010-1017 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We say that a finite metric space
$X$
can be embedded almost isometrically into a class of metric spaces
$C$
if for every
$\unicode[STIX]{x1D716}>0$
there exists an embedding of
$X$
into one of the elements of
$C$
with the bi-Lipschitz distortion less than
$1+\unicode[STIX]{x1D716}$
. We show that almost isometric embeddability conditions are equal for the following classes of spaces.(a)Quotients of Euclidean spaces by isometric actions of finite groups.(b)
$L_{2}$
-Wasserstein spaces over Euclidean spaces.(c)Compact flat manifolds.(d)Compact flat orbifolds.(e)Quotients of connected compact bi-invariant Lie groups by isometric actions of compact Lie groups. (This one is the most surprising.)
We call spaces which satisfy these conditions finite flat spaces. Since Markov-type constants depend only on finite subsets, we can conclude that connected compact bi-invariant Lie groups and their quotients have Markov type 2 with constant 1. |
---|---|
ISSN: | 0025-5793 2041-7942 |
DOI: | 10.1112/S0025579319000263 |