FINITE FLAT SPACES

We say that a finite metric space $X$ can be embedded almost isometrically into a class of metric spaces $C$ if for every $\unicode[STIX]{x1D716}>0$ there exists an embedding of $X$ into one of the elements of $C$ with the bi-Lipschitz distortion less than $1+\unicode[STIX]{x1D716}$ . We show tha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematika 2019, Vol.65 (4), p.1010-1017
1. Verfasser: Zolotov, Vladimir
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We say that a finite metric space $X$ can be embedded almost isometrically into a class of metric spaces $C$ if for every $\unicode[STIX]{x1D716}>0$ there exists an embedding of $X$ into one of the elements of $C$ with the bi-Lipschitz distortion less than $1+\unicode[STIX]{x1D716}$ . We show that almost isometric embeddability conditions are equal for the following classes of spaces.(a)Quotients of Euclidean spaces by isometric actions of finite groups.(b) $L_{2}$ -Wasserstein spaces over Euclidean spaces.(c)Compact flat manifolds.(d)Compact flat orbifolds.(e)Quotients of connected compact bi-invariant Lie groups by isometric actions of compact Lie groups. (This one is the most surprising.) We call spaces which satisfy these conditions finite flat spaces. Since Markov-type constants depend only on finite subsets, we can conclude that connected compact bi-invariant Lie groups and their quotients have Markov type 2 with constant 1.
ISSN:0025-5793
2041-7942
DOI:10.1112/S0025579319000263