THE MAXIMAL ORDER OF ITERATED MULTIPLICATIVE FUNCTIONS

Following Wigert, various authors, including Ramanujan, Gronwall, Erdős, Ivić, Schwarz, Wirsing and Shiu, determined the maximal order of several multiplicative functions, generalizing Wigert’s result $$\begin{eqnarray}\max _{n\leqslant x}\log d(n)=\frac{\log x}{\log \log x}(\log 2+o(1)).\end{eqnarr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematika 2019, Vol.65 (4), p.990-1009
Hauptverfasser: Elsholtz, Christian, Technau, Marc, Technau, Niclas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1009
container_issue 4
container_start_page 990
container_title Mathematika
container_volume 65
creator Elsholtz, Christian
Technau, Marc
Technau, Niclas
description Following Wigert, various authors, including Ramanujan, Gronwall, Erdős, Ivić, Schwarz, Wirsing and Shiu, determined the maximal order of several multiplicative functions, generalizing Wigert’s result $$\begin{eqnarray}\max _{n\leqslant x}\log d(n)=\frac{\log x}{\log \log x}(\log 2+o(1)).\end{eqnarray}$$ On the contrary, for many multiplicative functions, the maximal order of iterations of the functions remains widely open. The case of the iterated divisor function was only solved recently, answering a question of Ramanujan from 1915. Here we determine the maximal order of $\log f(f(n))$ for a class of multiplicative functions  $f$ . In particular, this class contains functions counting ideals of given norm in the ring of integers of an arbitrary, fixed quadratic number field. As a consequence, we determine such maximal orders for several multiplicative $f$ arising as a normalized function counting representations by certain binary quadratic forms. Incidentally, for the non-multiplicative function $r_{2}$ which counts how often a positive integer is represented as a sum of two squares, this entails the asymptotic formula $$\begin{eqnarray}\max _{n\leqslant x}\log r_{2}(r_{2}(n))=\frac{\sqrt{\log x}}{\log \log x}(c/\sqrt{2}+o(1))\end{eqnarray}$$ with some explicitly given constant $c>0$ .
doi_str_mv 10.1112/S0025579319000214
format Article
fullrecord <record><control><sourceid>cambridge_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1112_S0025579319000214</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1112_S0025579319000214</cupid><sourcerecordid>10_1112_S0025579319000214</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3014-908e9d16d00c3565e54392ed08f24f7aa45f4c7a54d53c2b339f23a4efee85073</originalsourceid><addsrcrecordid>eNqFj01Og0AUxydGE7F6AHdcAH3zBcyS0KklQjF0MO7IFGYMTWsNxDS9jWfxZELanUZX7yX_r_wQusVwhzEm90sAwnkgKBYwvJidIYcAw14gGDlHzih7o36Jrvp-DcD9kGEHBWou3Sx6SbIodfNiKgs3n7mJkkWk5NTNylQlT2kSRyp5ll-fs3IRqyRfLK_RhdWb3tyc7gSVM6niuZfmD4M79WoKmHkCQiMa7DcANeU-N5xRQUwDoSXMBlozblkdaM4aTmuyolRYQjUz1piQQ0AnCB97627X952x1XvXbnV3qDBUI3n1g3zIxMfMvt2Yw_-BKlOPv7XQ07Lerrq2eTXVevfRvQ20f2x_A6smZ1U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>THE MAXIMAL ORDER OF ITERATED MULTIPLICATIVE FUNCTIONS</title><source>Cambridge Journals</source><source>Wiley Online Library All Journals</source><creator>Elsholtz, Christian ; Technau, Marc ; Technau, Niclas</creator><creatorcontrib>Elsholtz, Christian ; Technau, Marc ; Technau, Niclas</creatorcontrib><description>Following Wigert, various authors, including Ramanujan, Gronwall, Erdős, Ivić, Schwarz, Wirsing and Shiu, determined the maximal order of several multiplicative functions, generalizing Wigert’s result $$\begin{eqnarray}\max _{n\leqslant x}\log d(n)=\frac{\log x}{\log \log x}(\log 2+o(1)).\end{eqnarray}$$ On the contrary, for many multiplicative functions, the maximal order of iterations of the functions remains widely open. The case of the iterated divisor function was only solved recently, answering a question of Ramanujan from 1915. Here we determine the maximal order of $\log f(f(n))$ for a class of multiplicative functions  $f$ . In particular, this class contains functions counting ideals of given norm in the ring of integers of an arbitrary, fixed quadratic number field. As a consequence, we determine such maximal orders for several multiplicative $f$ arising as a normalized function counting representations by certain binary quadratic forms. Incidentally, for the non-multiplicative function $r_{2}$ which counts how often a positive integer is represented as a sum of two squares, this entails the asymptotic formula $$\begin{eqnarray}\max _{n\leqslant x}\log r_{2}(r_{2}(n))=\frac{\sqrt{\log x}}{\log \log x}(c/\sqrt{2}+o(1))\end{eqnarray}$$ with some explicitly given constant $c&gt;0$ .</description><identifier>ISSN: 0025-5793</identifier><identifier>EISSN: 2041-7942</identifier><identifier>DOI: 10.1112/S0025579319000214</identifier><language>eng</language><publisher>London, UK: London Mathematical Society</publisher><subject>11N37 (primary)</subject><ispartof>Mathematika, 2019, Vol.65 (4), p.990-1009</ispartof><rights>Copyright © University College London 2019</rights><rights>2019 University College London</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3014-908e9d16d00c3565e54392ed08f24f7aa45f4c7a54d53c2b339f23a4efee85073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1112%2FS0025579319000214$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0025579319000214/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,1417,4024,27923,27924,27925,45574,45575,55628</link.rule.ids></links><search><creatorcontrib>Elsholtz, Christian</creatorcontrib><creatorcontrib>Technau, Marc</creatorcontrib><creatorcontrib>Technau, Niclas</creatorcontrib><title>THE MAXIMAL ORDER OF ITERATED MULTIPLICATIVE FUNCTIONS</title><title>Mathematika</title><addtitle>Mathematika</addtitle><description>Following Wigert, various authors, including Ramanujan, Gronwall, Erdős, Ivić, Schwarz, Wirsing and Shiu, determined the maximal order of several multiplicative functions, generalizing Wigert’s result $$\begin{eqnarray}\max _{n\leqslant x}\log d(n)=\frac{\log x}{\log \log x}(\log 2+o(1)).\end{eqnarray}$$ On the contrary, for many multiplicative functions, the maximal order of iterations of the functions remains widely open. The case of the iterated divisor function was only solved recently, answering a question of Ramanujan from 1915. Here we determine the maximal order of $\log f(f(n))$ for a class of multiplicative functions  $f$ . In particular, this class contains functions counting ideals of given norm in the ring of integers of an arbitrary, fixed quadratic number field. As a consequence, we determine such maximal orders for several multiplicative $f$ arising as a normalized function counting representations by certain binary quadratic forms. Incidentally, for the non-multiplicative function $r_{2}$ which counts how often a positive integer is represented as a sum of two squares, this entails the asymptotic formula $$\begin{eqnarray}\max _{n\leqslant x}\log r_{2}(r_{2}(n))=\frac{\sqrt{\log x}}{\log \log x}(c/\sqrt{2}+o(1))\end{eqnarray}$$ with some explicitly given constant $c&gt;0$ .</description><subject>11N37 (primary)</subject><issn>0025-5793</issn><issn>2041-7942</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFj01Og0AUxydGE7F6AHdcAH3zBcyS0KklQjF0MO7IFGYMTWsNxDS9jWfxZELanUZX7yX_r_wQusVwhzEm90sAwnkgKBYwvJidIYcAw14gGDlHzih7o36Jrvp-DcD9kGEHBWou3Sx6SbIodfNiKgs3n7mJkkWk5NTNylQlT2kSRyp5ll-fs3IRqyRfLK_RhdWb3tyc7gSVM6niuZfmD4M79WoKmHkCQiMa7DcANeU-N5xRQUwDoSXMBlozblkdaM4aTmuyolRYQjUz1piQQ0AnCB97627X952x1XvXbnV3qDBUI3n1g3zIxMfMvt2Yw_-BKlOPv7XQ07Lerrq2eTXVevfRvQ20f2x_A6smZ1U</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Elsholtz, Christian</creator><creator>Technau, Marc</creator><creator>Technau, Niclas</creator><general>London Mathematical Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2019</creationdate><title>THE MAXIMAL ORDER OF ITERATED MULTIPLICATIVE FUNCTIONS</title><author>Elsholtz, Christian ; Technau, Marc ; Technau, Niclas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3014-908e9d16d00c3565e54392ed08f24f7aa45f4c7a54d53c2b339f23a4efee85073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>11N37 (primary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elsholtz, Christian</creatorcontrib><creatorcontrib>Technau, Marc</creatorcontrib><creatorcontrib>Technau, Niclas</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematika</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Elsholtz, Christian</au><au>Technau, Marc</au><au>Technau, Niclas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>THE MAXIMAL ORDER OF ITERATED MULTIPLICATIVE FUNCTIONS</atitle><jtitle>Mathematika</jtitle><addtitle>Mathematika</addtitle><date>2019</date><risdate>2019</risdate><volume>65</volume><issue>4</issue><spage>990</spage><epage>1009</epage><pages>990-1009</pages><issn>0025-5793</issn><eissn>2041-7942</eissn><abstract>Following Wigert, various authors, including Ramanujan, Gronwall, Erdős, Ivić, Schwarz, Wirsing and Shiu, determined the maximal order of several multiplicative functions, generalizing Wigert’s result $$\begin{eqnarray}\max _{n\leqslant x}\log d(n)=\frac{\log x}{\log \log x}(\log 2+o(1)).\end{eqnarray}$$ On the contrary, for many multiplicative functions, the maximal order of iterations of the functions remains widely open. The case of the iterated divisor function was only solved recently, answering a question of Ramanujan from 1915. Here we determine the maximal order of $\log f(f(n))$ for a class of multiplicative functions  $f$ . In particular, this class contains functions counting ideals of given norm in the ring of integers of an arbitrary, fixed quadratic number field. As a consequence, we determine such maximal orders for several multiplicative $f$ arising as a normalized function counting representations by certain binary quadratic forms. Incidentally, for the non-multiplicative function $r_{2}$ which counts how often a positive integer is represented as a sum of two squares, this entails the asymptotic formula $$\begin{eqnarray}\max _{n\leqslant x}\log r_{2}(r_{2}(n))=\frac{\sqrt{\log x}}{\log \log x}(c/\sqrt{2}+o(1))\end{eqnarray}$$ with some explicitly given constant $c&gt;0$ .</abstract><cop>London, UK</cop><pub>London Mathematical Society</pub><doi>10.1112/S0025579319000214</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0025-5793
ispartof Mathematika, 2019, Vol.65 (4), p.990-1009
issn 0025-5793
2041-7942
language eng
recordid cdi_crossref_primary_10_1112_S0025579319000214
source Cambridge Journals; Wiley Online Library All Journals
subjects 11N37 (primary)
title THE MAXIMAL ORDER OF ITERATED MULTIPLICATIVE FUNCTIONS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T17%3A19%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cambridge_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=THE%20MAXIMAL%20ORDER%20OF%20ITERATED%20MULTIPLICATIVE%C2%A0FUNCTIONS&rft.jtitle=Mathematika&rft.au=Elsholtz,%20Christian&rft.date=2019&rft.volume=65&rft.issue=4&rft.spage=990&rft.epage=1009&rft.pages=990-1009&rft.issn=0025-5793&rft.eissn=2041-7942&rft_id=info:doi/10.1112/S0025579319000214&rft_dat=%3Ccambridge_cross%3E10_1112_S0025579319000214%3C/cambridge_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cupid=10_1112_S0025579319000214&rfr_iscdi=true