THE MAXIMAL ORDER OF ITERATED MULTIPLICATIVE FUNCTIONS
Following Wigert, various authors, including Ramanujan, Gronwall, Erdős, Ivić, Schwarz, Wirsing and Shiu, determined the maximal order of several multiplicative functions, generalizing Wigert’s result $$\begin{eqnarray}\max _{n\leqslant x}\log d(n)=\frac{\log x}{\log \log x}(\log 2+o(1)).\end{eqnarr...
Gespeichert in:
Veröffentlicht in: | Mathematika 2019, Vol.65 (4), p.990-1009 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Following Wigert, various authors, including Ramanujan, Gronwall, Erdős, Ivić, Schwarz, Wirsing and Shiu, determined the maximal order of several multiplicative functions, generalizing Wigert’s result
$$\begin{eqnarray}\max _{n\leqslant x}\log d(n)=\frac{\log x}{\log \log x}(\log 2+o(1)).\end{eqnarray}$$
On the contrary, for many multiplicative functions, the maximal order of iterations of the functions remains widely open. The case of the iterated divisor function was only solved recently, answering a question of Ramanujan from 1915. Here we determine the maximal order of
$\log f(f(n))$
for a class of multiplicative functions
$f$
. In particular, this class contains functions counting ideals of given norm in the ring of integers of an arbitrary, fixed quadratic number field. As a consequence, we determine such maximal orders for several multiplicative
$f$
arising as a normalized function counting representations by certain binary quadratic forms. Incidentally, for the non-multiplicative function
$r_{2}$
which counts how often a positive integer is represented as a sum of two squares, this entails the asymptotic formula
$$\begin{eqnarray}\max _{n\leqslant x}\log r_{2}(r_{2}(n))=\frac{\sqrt{\log x}}{\log \log x}(c/\sqrt{2}+o(1))\end{eqnarray}$$
with some explicitly given constant
$c>0$
. |
---|---|
ISSN: | 0025-5793 2041-7942 |
DOI: | 10.1112/S0025579319000214 |