MULTIDIMENSIONAL VAN DER CORPUT SETS AND SMALL FRACTIONAL PARTS OF POLYNOMIALS

We establish Diophantine inequalities for the fractional parts of generalized polynomials, in particular for sequences $\unicode[STIX]{x1D708}(n)=\lfloor n^{c}\rfloor +n^{k}$ with $c>1$ a non-integral real number and $k\in \mathbb{N}$ , as well as for $\unicode[STIX]{x1D708}(p)$ where $p$ runs th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematika 2019, Vol.65 (2), p.400-435
Hauptverfasser: Madritsch, Manfred G., Tichy, Robert F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We establish Diophantine inequalities for the fractional parts of generalized polynomials, in particular for sequences $\unicode[STIX]{x1D708}(n)=\lfloor n^{c}\rfloor +n^{k}$ with $c>1$ a non-integral real number and $k\in \mathbb{N}$ , as well as for $\unicode[STIX]{x1D708}(p)$ where $p$ runs through all prime numbers. This is related to classical work of Heilbronn and to recent results of Bergelson et al.
ISSN:0025-5793
2041-7942
DOI:10.1112/S0025579318000529