MULTIDIMENSIONAL VAN DER CORPUT SETS AND SMALL FRACTIONAL PARTS OF POLYNOMIALS
We establish Diophantine inequalities for the fractional parts of generalized polynomials, in particular for sequences $\unicode[STIX]{x1D708}(n)=\lfloor n^{c}\rfloor +n^{k}$ with $c>1$ a non-integral real number and $k\in \mathbb{N}$ , as well as for $\unicode[STIX]{x1D708}(p)$ where $p$ runs th...
Gespeichert in:
Veröffentlicht in: | Mathematika 2019, Vol.65 (2), p.400-435 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We establish Diophantine inequalities for the fractional parts of generalized polynomials, in particular for sequences
$\unicode[STIX]{x1D708}(n)=\lfloor n^{c}\rfloor +n^{k}$
with
$c>1$
a non-integral real number and
$k\in \mathbb{N}$
, as well as for
$\unicode[STIX]{x1D708}(p)$
where
$p$
runs through all prime numbers. This is related to classical work of Heilbronn and to recent results of Bergelson et al. |
---|---|
ISSN: | 0025-5793 2041-7942 |
DOI: | 10.1112/S0025579318000529 |