ADDITIVE ENERGY AND THE METRIC POISSONIAN PROPERTY

Let $A$ be a set of natural numbers. Recent work has suggested a strong link between the additive energy of $A$ (the number of solutions to $a_{1}+a_{2}=a_{3}+a_{4}$ with $a_{i}\in A$ ) and the metric Poissonian property, which is a fine-scale equidistribution property for dilates of $A$ modulo $1$...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematika 2018, Vol.64 (3), p.679-700
Hauptverfasser: Bloom, Thomas F., Chow, Sam, Gafni, Ayla, Walker, Aled
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let $A$ be a set of natural numbers. Recent work has suggested a strong link between the additive energy of $A$ (the number of solutions to $a_{1}+a_{2}=a_{3}+a_{4}$ with $a_{i}\in A$ ) and the metric Poissonian property, which is a fine-scale equidistribution property for dilates of $A$ modulo $1$ . There appears to be reasonable evidence to speculate a sharp Khinchin-type threshold, that is, to speculate that the metric Poissonian property should be completely determined by whether or not a certain sum of additive energies is convergent or divergent. In this article, we primarily address the convergence theory, in other words the extent to which having a low additive energy forces a set to be metric Poissonian.
ISSN:0025-5793
2041-7942
DOI:10.1112/S0025579318000207