VARIANTS OF ERDŐS–SELFRIDGE SUPERELLIPTIC CURVES AND THEIR RATIONAL POINTS

For the superelliptic curves of the form $$\begin{eqnarray}(x+1)\cdots (x+i-1)(x+i+1)\cdots (x+k)=y^{\ell }\end{eqnarray}$$ with $y\neq 0$ , $k\geqslant 3$ , $\ell \geqslant 2,$ a prime and for $i\in [2,k]\setminus \unicode[STIX]{x1D6FA}$ , we show that $\ell

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematika 2018, Vol.64 (2), p.380-386
Hauptverfasser: Das, Pranabesh, Laishram, Shanta, Saradha, N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 386
container_issue 2
container_start_page 380
container_title Mathematika
container_volume 64
creator Das, Pranabesh
Laishram, Shanta
Saradha, N.
description For the superelliptic curves of the form $$\begin{eqnarray}(x+1)\cdots (x+i-1)(x+i+1)\cdots (x+k)=y^{\ell }\end{eqnarray}$$ with $y\neq 0$ , $k\geqslant 3$ , $\ell \geqslant 2,$ a prime and for $i\in [2,k]\setminus \unicode[STIX]{x1D6FA}$ , we show that $\ell
doi_str_mv 10.1112/S0025579317000559
format Article
fullrecord <record><control><sourceid>cambridge_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1112_S0025579317000559</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1112_S0025579317000559</cupid><sourcerecordid>10_1112_S0025579317000559</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2799-48e3b6162bbdbf780a23432bd208509766e7f0eb3320871fef5f69ab231286c63</originalsourceid><addsrcrecordid>eNqFkE1OwzAQhS0EEqVwAHa-QMA_iR0vo9RtLdImcpJuo7i1UauWokQIdccRkDgTF-EkJGp3IFiNNG--9zQPgFuM7jDG5D5HiAQBFxRzhFAQiDMwIMjHHhc-OQeDXvZ6_RJcte2mO2Ghjwdgtoi0iuZFDtMxlHr0-Z5_vX3kMhlrNZpImJeZ1DJJVFaoGMalXsgcRvMRLKZSaaijQqXzKIFZqjqTa3Dh6m1rb05zCMqxLOKpl6QTFUeJtyRcCM8PLTUMM2LMyjgeoppQnxKzIigMkOCMWe6QNZR2C46ddYFjojaEYhKyJaNDgI--y2bfto111XOz3tXNocKo6vuofvTRMfGReV1v7eF_oJoVD7-50FNyvTPNevVoq83-pXnqvv0j-xt8u25d</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>VARIANTS OF ERDŐS–SELFRIDGE SUPERELLIPTIC CURVES AND THEIR RATIONAL POINTS</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Cambridge Journals</source><creator>Das, Pranabesh ; Laishram, Shanta ; Saradha, N.</creator><creatorcontrib>Das, Pranabesh ; Laishram, Shanta ; Saradha, N.</creatorcontrib><description>For the superelliptic curves of the form $$\begin{eqnarray}(x+1)\cdots (x+i-1)(x+i+1)\cdots (x+k)=y^{\ell }\end{eqnarray}$$ with $y\neq 0$ , $k\geqslant 3$ , $\ell \geqslant 2,$ a prime and for $i\in [2,k]\setminus \unicode[STIX]{x1D6FA}$ , we show that $\ell &lt;\text{e}^{3^{k}}.$ Here $\unicode[STIX]{x1D6FA}$ denotes the interval $[p_{\unicode[STIX]{x1D703}},(k-p_{\unicode[STIX]{x1D703}}))$ , where $p_{\unicode[STIX]{x1D703}}$ is the least prime greater than or equal to $k/2$ . Bennett and Siksek obtained a similar bound for $i=1$ in a recent paper.</description><identifier>ISSN: 0025-5793</identifier><identifier>EISSN: 2041-7942</identifier><identifier>DOI: 10.1112/S0025579317000559</identifier><language>eng</language><publisher>London, UK: London Mathematical Society</publisher><subject>11D61 (primary)</subject><ispartof>Mathematika, 2018, Vol.64 (2), p.380-386</ispartof><rights>Copyright © University College London 2018</rights><rights>2018 University College London</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2799-48e3b6162bbdbf780a23432bd208509766e7f0eb3320871fef5f69ab231286c63</citedby><cites>FETCH-LOGICAL-c2799-48e3b6162bbdbf780a23432bd208509766e7f0eb3320871fef5f69ab231286c63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1112%2FS0025579317000559$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0025579317000559/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,1416,4014,27914,27915,27916,45565,45566,55619</link.rule.ids></links><search><creatorcontrib>Das, Pranabesh</creatorcontrib><creatorcontrib>Laishram, Shanta</creatorcontrib><creatorcontrib>Saradha, N.</creatorcontrib><title>VARIANTS OF ERDŐS–SELFRIDGE SUPERELLIPTIC CURVES AND THEIR RATIONAL POINTS</title><title>Mathematika</title><addtitle>Mathematika</addtitle><description>For the superelliptic curves of the form $$\begin{eqnarray}(x+1)\cdots (x+i-1)(x+i+1)\cdots (x+k)=y^{\ell }\end{eqnarray}$$ with $y\neq 0$ , $k\geqslant 3$ , $\ell \geqslant 2,$ a prime and for $i\in [2,k]\setminus \unicode[STIX]{x1D6FA}$ , we show that $\ell &lt;\text{e}^{3^{k}}.$ Here $\unicode[STIX]{x1D6FA}$ denotes the interval $[p_{\unicode[STIX]{x1D703}},(k-p_{\unicode[STIX]{x1D703}}))$ , where $p_{\unicode[STIX]{x1D703}}$ is the least prime greater than or equal to $k/2$ . Bennett and Siksek obtained a similar bound for $i=1$ in a recent paper.</description><subject>11D61 (primary)</subject><issn>0025-5793</issn><issn>2041-7942</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkE1OwzAQhS0EEqVwAHa-QMA_iR0vo9RtLdImcpJuo7i1UauWokQIdccRkDgTF-EkJGp3IFiNNG--9zQPgFuM7jDG5D5HiAQBFxRzhFAQiDMwIMjHHhc-OQeDXvZ6_RJcte2mO2Ghjwdgtoi0iuZFDtMxlHr0-Z5_vX3kMhlrNZpImJeZ1DJJVFaoGMalXsgcRvMRLKZSaaijQqXzKIFZqjqTa3Dh6m1rb05zCMqxLOKpl6QTFUeJtyRcCM8PLTUMM2LMyjgeoppQnxKzIigMkOCMWe6QNZR2C46ddYFjojaEYhKyJaNDgI--y2bfto111XOz3tXNocKo6vuofvTRMfGReV1v7eF_oJoVD7-50FNyvTPNevVoq83-pXnqvv0j-xt8u25d</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Das, Pranabesh</creator><creator>Laishram, Shanta</creator><creator>Saradha, N.</creator><general>London Mathematical Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2018</creationdate><title>VARIANTS OF ERDŐS–SELFRIDGE SUPERELLIPTIC CURVES AND THEIR RATIONAL POINTS</title><author>Das, Pranabesh ; Laishram, Shanta ; Saradha, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2799-48e3b6162bbdbf780a23432bd208509766e7f0eb3320871fef5f69ab231286c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>11D61 (primary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Das, Pranabesh</creatorcontrib><creatorcontrib>Laishram, Shanta</creatorcontrib><creatorcontrib>Saradha, N.</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematika</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Das, Pranabesh</au><au>Laishram, Shanta</au><au>Saradha, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>VARIANTS OF ERDŐS–SELFRIDGE SUPERELLIPTIC CURVES AND THEIR RATIONAL POINTS</atitle><jtitle>Mathematika</jtitle><addtitle>Mathematika</addtitle><date>2018</date><risdate>2018</risdate><volume>64</volume><issue>2</issue><spage>380</spage><epage>386</epage><pages>380-386</pages><issn>0025-5793</issn><eissn>2041-7942</eissn><abstract>For the superelliptic curves of the form $$\begin{eqnarray}(x+1)\cdots (x+i-1)(x+i+1)\cdots (x+k)=y^{\ell }\end{eqnarray}$$ with $y\neq 0$ , $k\geqslant 3$ , $\ell \geqslant 2,$ a prime and for $i\in [2,k]\setminus \unicode[STIX]{x1D6FA}$ , we show that $\ell &lt;\text{e}^{3^{k}}.$ Here $\unicode[STIX]{x1D6FA}$ denotes the interval $[p_{\unicode[STIX]{x1D703}},(k-p_{\unicode[STIX]{x1D703}}))$ , where $p_{\unicode[STIX]{x1D703}}$ is the least prime greater than or equal to $k/2$ . Bennett and Siksek obtained a similar bound for $i=1$ in a recent paper.</abstract><cop>London, UK</cop><pub>London Mathematical Society</pub><doi>10.1112/S0025579317000559</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0025-5793
ispartof Mathematika, 2018, Vol.64 (2), p.380-386
issn 0025-5793
2041-7942
language eng
recordid cdi_crossref_primary_10_1112_S0025579317000559
source Wiley Online Library Journals Frontfile Complete; Cambridge Journals
subjects 11D61 (primary)
title VARIANTS OF ERDŐS–SELFRIDGE SUPERELLIPTIC CURVES AND THEIR RATIONAL POINTS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T02%3A49%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cambridge_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=VARIANTS%20OF%20ERD%C5%90S%E2%80%93SELFRIDGE%20SUPERELLIPTIC%20CURVES%20AND%20THEIR%20RATIONAL%20POINTS&rft.jtitle=Mathematika&rft.au=Das,%20Pranabesh&rft.date=2018&rft.volume=64&rft.issue=2&rft.spage=380&rft.epage=386&rft.pages=380-386&rft.issn=0025-5793&rft.eissn=2041-7942&rft_id=info:doi/10.1112/S0025579317000559&rft_dat=%3Ccambridge_cross%3E10_1112_S0025579317000559%3C/cambridge_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cupid=10_1112_S0025579317000559&rfr_iscdi=true