LOCAL AVERAGE OF THE HYPERBOLIC CIRCLE PROBLEM FOR FUCHSIAN GROUPS
Let $\unicode[STIX]{x1D6E4}\subseteq \operatorname{PSL}(2,\mathbf{R})$ be a finite-volume Fuchsian group. The hyperbolic circle problem is the estimation of the number of elements of the $\unicode[STIX]{x1D6E4}$ -orbit of $z$ in a hyperbolic circle around $w$ of radius $R$ , where $z$ and $w$ are gi...
Gespeichert in:
Veröffentlicht in: | Mathematika 2018, Vol.64 (1), p.159-183 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
$\unicode[STIX]{x1D6E4}\subseteq \operatorname{PSL}(2,\mathbf{R})$
be a finite-volume Fuchsian group. The hyperbolic circle problem is the estimation of the number of elements of the
$\unicode[STIX]{x1D6E4}$
-orbit of
$z$
in a hyperbolic circle around
$w$
of radius
$R$
, where
$z$
and
$w$
are given points of the upper half plane and
$R$
is a large number. An estimate with error term
$\text{e}^{(2/3)R}$
is known, and this has not been improved for any group. Recently, Risager and Petridis proved that in the special case
$\unicode[STIX]{x1D6E4}=\operatorname{PSL}(2,\mathbf{Z})$
taking
$z=w$
and averaging over
$z$
in a certain way the error term can be improved to
$\text{e}^{(7/12+\unicode[STIX]{x1D716})R}$
. Here we show such an improvement for a general
$\unicode[STIX]{x1D6E4}$
; our error term is
$\text{e}^{(5/8+\unicode[STIX]{x1D716})R}$
(which is better than
$\text{e}^{(2/3)R}$
but weaker than the estimate of Risager and Petridis in the case
$\unicode[STIX]{x1D6E4}=\operatorname{PSL}(2,\mathbf{Z})$
). Our main tool is our generalization of the Selberg trace formula proved earlier. |
---|---|
ISSN: | 0025-5793 2041-7942 |
DOI: | 10.1112/S0025579317000419 |