ON THE EXISTENCE OF 1-SEPARATED SEQUENCES ON THE UNIT BALL OF A FINITE-DIMENSIONAL BANACH SPACE

Given a finite-dimensional Banach space $X$ and an Auerbach basis $\{(x_{k},x_{k}^{\ast }):1\leqslant k\leqslant n\}$ of $X$, it is proved that there exist $n+1$ linear combinations $z_{1},\ldots ,z_{n+1}$ of $x_{1},\ldots ,x_{n}$ with coordinates $0,\pm 1$, such that $\Vert z_{k}\Vert =1$, for $k=1...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematika 2015-09, Vol.61 (3), p.547-558, Article 547
Hauptverfasser: Glakousakis, E., Mercourakis, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 558
container_issue 3
container_start_page 547
container_title Mathematika
container_volume 61
creator Glakousakis, E.
Mercourakis, S.
description Given a finite-dimensional Banach space $X$ and an Auerbach basis $\{(x_{k},x_{k}^{\ast }):1\leqslant k\leqslant n\}$ of $X$, it is proved that there exist $n+1$ linear combinations $z_{1},\ldots ,z_{n+1}$ of $x_{1},\ldots ,x_{n}$ with coordinates $0,\pm 1$, such that $\Vert z_{k}\Vert =1$, for $k=1$, $2,\ldots ,n+1$ and $\Vert z_{k}-z_{l}\Vert >1$, for $1\leqslant k
doi_str_mv 10.1112/S002557931400028X
format Article
fullrecord <record><control><sourceid>cambridge_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1112_S002557931400028X</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1112_S002557931400028X</cupid><sourcerecordid>10_1112_S002557931400028X</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462X-e3c925304033a071a8bf22c486c0fc262cd155e85ae0da2d62a070d1af8e86873</originalsourceid><addsrcrecordid>eNqFUNtOwjAYbowmIvoA3vUFqn-7U7mso7jFsaEbCXdN6TozwsFsGMPbuwWu1ODVf_hOyYfQPYUHSil7zAGY5wUjh7rQrXxxgQYMXEqCkcsu0aCHSY9fo5u2XQF4PnfpAKksxUUksVzEeSHTUOJsginJ5Uy8iUKOcS5f5_0_xyfmPI0L_CSSpGcKPIm7W5JxPJVpHmepSDowFWGE85kI5S26qvS6tXenOUTziSzCiCTZcxyKhBjXZwtiHTNingMuOI6GgGq-rBgzLvcNVIb5zJTU8yz3tIVSs9JnHQtKqituuc8DZ4jo0dc0u7ZtbKU-mnqjm4OioPqG1K-GOk3wQ2Pqvd7Xu-2-0fX6rDI8Kr_qtT38H6WmxctfLs4pX2-WTV2-W7XafTbbrqcz2d8scII7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>ON THE EXISTENCE OF 1-SEPARATED SEQUENCES ON THE UNIT BALL OF A FINITE-DIMENSIONAL BANACH SPACE</title><source>Wiley Online Library - AutoHoldings Journals</source><source>Cambridge University Press Journals Complete</source><creator>Glakousakis, E. ; Mercourakis, S.</creator><creatorcontrib>Glakousakis, E. ; Mercourakis, S.</creatorcontrib><description>Given a finite-dimensional Banach space $X$ and an Auerbach basis $\{(x_{k},x_{k}^{\ast }):1\leqslant k\leqslant n\}$ of $X$, it is proved that there exist $n+1$ linear combinations $z_{1},\ldots ,z_{n+1}$ of $x_{1},\ldots ,x_{n}$ with coordinates $0,\pm 1$, such that $\Vert z_{k}\Vert =1$, for $k=1$, $2,\ldots ,n+1$ and $\Vert z_{k}-z_{l}\Vert &gt;1$, for $1\leqslant k&lt;l\leqslant n+1$.</description><identifier>ISSN: 0025-5793</identifier><identifier>EISSN: 2041-7942</identifier><identifier>DOI: 10.1112/S002557931400028X</identifier><language>eng</language><publisher>London, UK: London Mathematical Society</publisher><subject>46B20 ; 52A21 (primary) ; 52C99 (secondary)</subject><ispartof>Mathematika, 2015-09, Vol.61 (3), p.547-558, Article 547</ispartof><rights>Copyright © University College London 2014</rights><rights>2015 University College London</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462X-e3c925304033a071a8bf22c486c0fc262cd155e85ae0da2d62a070d1af8e86873</citedby><cites>FETCH-LOGICAL-c462X-e3c925304033a071a8bf22c486c0fc262cd155e85ae0da2d62a070d1af8e86873</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1112%2FS002557931400028X$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S002557931400028X/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,1411,27901,27902,45550,45551,55603</link.rule.ids></links><search><creatorcontrib>Glakousakis, E.</creatorcontrib><creatorcontrib>Mercourakis, S.</creatorcontrib><title>ON THE EXISTENCE OF 1-SEPARATED SEQUENCES ON THE UNIT BALL OF A FINITE-DIMENSIONAL BANACH SPACE</title><title>Mathematika</title><addtitle>Mathematika</addtitle><description>Given a finite-dimensional Banach space $X$ and an Auerbach basis $\{(x_{k},x_{k}^{\ast }):1\leqslant k\leqslant n\}$ of $X$, it is proved that there exist $n+1$ linear combinations $z_{1},\ldots ,z_{n+1}$ of $x_{1},\ldots ,x_{n}$ with coordinates $0,\pm 1$, such that $\Vert z_{k}\Vert =1$, for $k=1$, $2,\ldots ,n+1$ and $\Vert z_{k}-z_{l}\Vert &gt;1$, for $1\leqslant k&lt;l\leqslant n+1$.</description><subject>46B20</subject><subject>52A21 (primary)</subject><subject>52C99 (secondary)</subject><issn>0025-5793</issn><issn>2041-7942</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFUNtOwjAYbowmIvoA3vUFqn-7U7mso7jFsaEbCXdN6TozwsFsGMPbuwWu1ODVf_hOyYfQPYUHSil7zAGY5wUjh7rQrXxxgQYMXEqCkcsu0aCHSY9fo5u2XQF4PnfpAKksxUUksVzEeSHTUOJsginJ5Uy8iUKOcS5f5_0_xyfmPI0L_CSSpGcKPIm7W5JxPJVpHmepSDowFWGE85kI5S26qvS6tXenOUTziSzCiCTZcxyKhBjXZwtiHTNingMuOI6GgGq-rBgzLvcNVIb5zJTU8yz3tIVSs9JnHQtKqituuc8DZ4jo0dc0u7ZtbKU-mnqjm4OioPqG1K-GOk3wQ2Pqvd7Xu-2-0fX6rDI8Kr_qtT38H6WmxctfLs4pX2-WTV2-W7XafTbbrqcz2d8scII7</recordid><startdate>201509</startdate><enddate>201509</enddate><creator>Glakousakis, E.</creator><creator>Mercourakis, S.</creator><general>London Mathematical Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201509</creationdate><title>ON THE EXISTENCE OF 1-SEPARATED SEQUENCES ON THE UNIT BALL OF A FINITE-DIMENSIONAL BANACH SPACE</title><author>Glakousakis, E. ; Mercourakis, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462X-e3c925304033a071a8bf22c486c0fc262cd155e85ae0da2d62a070d1af8e86873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>46B20</topic><topic>52A21 (primary)</topic><topic>52C99 (secondary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Glakousakis, E.</creatorcontrib><creatorcontrib>Mercourakis, S.</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematika</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Glakousakis, E.</au><au>Mercourakis, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ON THE EXISTENCE OF 1-SEPARATED SEQUENCES ON THE UNIT BALL OF A FINITE-DIMENSIONAL BANACH SPACE</atitle><jtitle>Mathematika</jtitle><addtitle>Mathematika</addtitle><date>2015-09</date><risdate>2015</risdate><volume>61</volume><issue>3</issue><spage>547</spage><epage>558</epage><pages>547-558</pages><artnum>547</artnum><issn>0025-5793</issn><eissn>2041-7942</eissn><abstract>Given a finite-dimensional Banach space $X$ and an Auerbach basis $\{(x_{k},x_{k}^{\ast }):1\leqslant k\leqslant n\}$ of $X$, it is proved that there exist $n+1$ linear combinations $z_{1},\ldots ,z_{n+1}$ of $x_{1},\ldots ,x_{n}$ with coordinates $0,\pm 1$, such that $\Vert z_{k}\Vert =1$, for $k=1$, $2,\ldots ,n+1$ and $\Vert z_{k}-z_{l}\Vert &gt;1$, for $1\leqslant k&lt;l\leqslant n+1$.</abstract><cop>London, UK</cop><pub>London Mathematical Society</pub><doi>10.1112/S002557931400028X</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0025-5793
ispartof Mathematika, 2015-09, Vol.61 (3), p.547-558, Article 547
issn 0025-5793
2041-7942
language eng
recordid cdi_crossref_primary_10_1112_S002557931400028X
source Wiley Online Library - AutoHoldings Journals; Cambridge University Press Journals Complete
subjects 46B20
52A21 (primary)
52C99 (secondary)
title ON THE EXISTENCE OF 1-SEPARATED SEQUENCES ON THE UNIT BALL OF A FINITE-DIMENSIONAL BANACH SPACE
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T01%3A37%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cambridge_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ON%20THE%20EXISTENCE%20OF%201-SEPARATED%20SEQUENCES%20ON%20THE%20UNIT%20BALL%20OF%20A%20FINITE-DIMENSIONAL%20BANACH%20SPACE&rft.jtitle=Mathematika&rft.au=Glakousakis,%20E.&rft.date=2015-09&rft.volume=61&rft.issue=3&rft.spage=547&rft.epage=558&rft.pages=547-558&rft.artnum=547&rft.issn=0025-5793&rft.eissn=2041-7942&rft_id=info:doi/10.1112/S002557931400028X&rft_dat=%3Ccambridge_cross%3E10_1112_S002557931400028X%3C/cambridge_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cupid=10_1112_S002557931400028X&rfr_iscdi=true