ON THE EXISTENCE OF 1-SEPARATED SEQUENCES ON THE UNIT BALL OF A FINITE-DIMENSIONAL BANACH SPACE
Given a finite-dimensional Banach space $X$ and an Auerbach basis $\{(x_{k},x_{k}^{\ast }):1\leqslant k\leqslant n\}$ of $X$, it is proved that there exist $n+1$ linear combinations $z_{1},\ldots ,z_{n+1}$ of $x_{1},\ldots ,x_{n}$ with coordinates $0,\pm 1$, such that $\Vert z_{k}\Vert =1$, for $k=1...
Gespeichert in:
Veröffentlicht in: | Mathematika 2015-09, Vol.61 (3), p.547-558, Article 547 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Given a finite-dimensional Banach space $X$ and an Auerbach basis $\{(x_{k},x_{k}^{\ast }):1\leqslant k\leqslant n\}$ of $X$, it is proved that there exist $n+1$ linear combinations $z_{1},\ldots ,z_{n+1}$ of $x_{1},\ldots ,x_{n}$ with coordinates $0,\pm 1$, such that $\Vert z_{k}\Vert =1$, for $k=1$, $2,\ldots ,n+1$ and $\Vert z_{k}-z_{l}\Vert >1$, for $1\leqslant k |
---|---|
ISSN: | 0025-5793 2041-7942 |
DOI: | 10.1112/S002557931400028X |