LOWER BOUNDS FOR ${L}_{1} $ DISCREPANCY

We find the best asymptotic lower bounds for the coefficient of the leading term of the ${L}_{1} $ norm of the two-dimensional axis-parallel discrepancy that can be obtained by Roth’s orthogonal function method among a large class of test functions. We use methods of combinatorics, probability, and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematika 2013-07, Vol.59 (2), p.365-379
1. Verfasser: Vagharshakyan, Armen
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We find the best asymptotic lower bounds for the coefficient of the leading term of the ${L}_{1} $ norm of the two-dimensional axis-parallel discrepancy that can be obtained by Roth’s orthogonal function method among a large class of test functions. We use methods of combinatorics, probability, and complex and harmonic analysis.
ISSN:0025-5793
2041-7942
DOI:10.1112/S0025579312001180