ON MULTIPLICATIVELY BADLY APPROXIMABLE NUMBERS

The Littlewood conjecture states that $\liminf _{q\to \infty } q\cdot \|q\alpha \|\cdot \|q\beta \|=0$ for all (α,β)∈ℝ2. We show that with the additional factor of log q⋅log log q, the statement is false. Indeed, our main result implies that the set of (α,β) for which $ \liminf _{q\to \infty } q\cdo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematika 2013-01, Vol.59 (1), p.31-55
1. Verfasser: Badziahin, Dzmitry A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Littlewood conjecture states that $\liminf _{q\to \infty } q\cdot \|q\alpha \|\cdot \|q\beta \|=0$ for all (α,β)∈ℝ2. We show that with the additional factor of log q⋅log log q, the statement is false. Indeed, our main result implies that the set of (α,β) for which $ \liminf _{q\to \infty } q\cdot \log q\cdot \log \log q\cdot \|q\alpha \|\cdot \|q\beta \|>0$ is of full dimension.
ISSN:0025-5793
2041-7942
DOI:10.1112/S0025579312000095