ON MULTIPLICATIVELY BADLY APPROXIMABLE NUMBERS
The Littlewood conjecture states that $\liminf _{q\to \infty } q\cdot \|q\alpha \|\cdot \|q\beta \|=0$ for all (α,β)∈ℝ2. We show that with the additional factor of log q⋅log log q, the statement is false. Indeed, our main result implies that the set of (α,β) for which $ \liminf _{q\to \infty } q\cdo...
Gespeichert in:
Veröffentlicht in: | Mathematika 2013-01, Vol.59 (1), p.31-55 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The Littlewood conjecture states that $\liminf _{q\to \infty } q\cdot \|q\alpha \|\cdot \|q\beta \|=0$ for all (α,β)∈ℝ2. We show that with the additional factor of log q⋅log log q, the statement is false. Indeed, our main result implies that the set of (α,β) for which $ \liminf _{q\to \infty } q\cdot \log q\cdot \log \log q\cdot \|q\alpha \|\cdot \|q\beta \|>0$ is of full dimension. |
---|---|
ISSN: | 0025-5793 2041-7942 |
DOI: | 10.1112/S0025579312000095 |