SEMIREGULAR FACTORIZATIONS OF REGULAR MULTIGRAPHS

An (r,r+1)-factor of a graph G is a spanning subgraph H such that dH(v)∈{r,r+1} for all vertices v∈ (G). If G is expressed as the union of edge-disjoint (r,r+1)-factors, then this expression is an (r,r+1)-factorization of G. Let μ(r) be the smallest integer with the property that if G is a regular l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematika 2010-07, Vol.56 (2), p.357-362
Hauptverfasser: Ferencak, Michael N., Hilton, Anthony J. W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An (r,r+1)-factor of a graph G is a spanning subgraph H such that dH(v)∈{r,r+1} for all vertices v∈ (G). If G is expressed as the union of edge-disjoint (r,r+1)-factors, then this expression is an (r,r+1)-factorization of G. Let μ(r) be the smallest integer with the property that if G is a regular loopless multigraph of degree d with d≥μ(r), then G has an (r,r+1)-factorization. It is shown that $\mu (r)\le \frac {3}{2}r^2+3r+1$ if r is even. The proof employs a novel list-coloring approach. Together with known results, this shows that μ(r)=r2+1 if r is odd and $\frac {3}{2}(r^2-2r)\le \mu (r)\le \min \{2r^2-3r, \frac {3}{2}r^2+3r+1\}$ if r is even.
ISSN:0025-5793
2041-7942
DOI:10.1112/S0025579310001051