A short proof of Hadwiger's characterization theorem
One of the most beautiful and important results in geometric convexity is Hadwiger's characterization theorem for the quermassintegrals. Hadwiger's theorem classifies all continuous rigid motion invariant valuations on convex bodies as consisting of the linear span of the quermassintegrals...
Gespeichert in:
Veröffentlicht in: | Mathematika 1995-12, Vol.42 (2), p.329-339 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 339 |
---|---|
container_issue | 2 |
container_start_page | 329 |
container_title | Mathematika |
container_volume | 42 |
creator | Klain, Daniel A. |
description | One of the most beautiful and important results in geometric convexity is Hadwiger's characterization theorem for the quermassintegrals. Hadwiger's theorem classifies all continuous rigid motion invariant valuations on convex bodies as consisting of the linear span of the quermassintegrals (or, equivalently, of the intrinsic volumes) [4]. Hadwiger's characterization leads to effortless proofs of numerous results in integral geometry, including various kinematic formulas [7, 9] and the mean projection formulas for convex bodies [10]. Hadwiger's result also provides a connection between rigid motion invariant set functions and symmetric polynomials [1, 7]. |
doi_str_mv | 10.1112/S0025579300014625 |
format | Article |
fullrecord | <record><control><sourceid>cambridge_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1112_S0025579300014625</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1112_S0025579300014625</cupid><sourcerecordid>10_1112_S0025579300014625</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4535-11294f860043dc1cec436c1e5e044a1af56219f0b136d3698e7d8c8c18ae94e23</originalsourceid><addsrcrecordid>eNqFkE9PAjEQxRujiYh-AG9787Ta6b_dPSJRMGKMAY23pnRnoQiUtGsQP71LIF40mkwyhzfvl_eGkHOglwDAroaUMimzglNKQSgmD0iLUQFpVgh2SFpbOd3qx-QkxhmlUuUCWkR0kjj1oU5WwfsqaaZvyrWbYLiIiZ2aYGyNwX2a2vllUk_RB1yckqPKzCOe7XebPN_ejLr9dPDYu-t2BqkVksu0yVWIKleUCl5asGgFVxZQIhXCgKmkYlBUdAxclVwVOWZlbnMLucFCIONtAjuuDT7GgJVeBbcwYaOB6m1t_aN24-nuPGs3x83_Bv0wuv-Nku4oLtb48U0x4U2rjGdSq96T7r3wazkUoF-be75Pahbj4MoJ6pl_D8vmO39k_QL_ynla</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A short proof of Hadwiger's characterization theorem</title><source>Wiley Online Library All Journals</source><creator>Klain, Daniel A.</creator><creatorcontrib>Klain, Daniel A.</creatorcontrib><description>One of the most beautiful and important results in geometric convexity is Hadwiger's characterization theorem for the quermassintegrals. Hadwiger's theorem classifies all continuous rigid motion invariant valuations on convex bodies as consisting of the linear span of the quermassintegrals (or, equivalently, of the intrinsic volumes) [4]. Hadwiger's characterization leads to effortless proofs of numerous results in integral geometry, including various kinematic formulas [7, 9] and the mean projection formulas for convex bodies [10]. Hadwiger's result also provides a connection between rigid motion invariant set functions and symmetric polynomials [1, 7].</description><identifier>ISSN: 0025-5793</identifier><identifier>EISSN: 2041-7942</identifier><identifier>DOI: 10.1112/S0025579300014625</identifier><language>eng</language><publisher>London, UK: London Mathematical Society</publisher><subject>52A39 ; 52A39: CONVEX AND DISCRETE GEOMETRY ; CONVEX AND DISCRETE GEOMETRY ; General Convexity ; Mixed volumes and related topics</subject><ispartof>Mathematika, 1995-12, Vol.42 (2), p.329-339</ispartof><rights>Copyright © University College London 1995</rights><rights>1995 University College London</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4535-11294f860043dc1cec436c1e5e044a1af56219f0b136d3698e7d8c8c18ae94e23</citedby><cites>FETCH-LOGICAL-c4535-11294f860043dc1cec436c1e5e044a1af56219f0b136d3698e7d8c8c18ae94e23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1112%2FS0025579300014625$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1112%2FS0025579300014625$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Klain, Daniel A.</creatorcontrib><title>A short proof of Hadwiger's characterization theorem</title><title>Mathematika</title><addtitle>Mathematika</addtitle><description>One of the most beautiful and important results in geometric convexity is Hadwiger's characterization theorem for the quermassintegrals. Hadwiger's theorem classifies all continuous rigid motion invariant valuations on convex bodies as consisting of the linear span of the quermassintegrals (or, equivalently, of the intrinsic volumes) [4]. Hadwiger's characterization leads to effortless proofs of numerous results in integral geometry, including various kinematic formulas [7, 9] and the mean projection formulas for convex bodies [10]. Hadwiger's result also provides a connection between rigid motion invariant set functions and symmetric polynomials [1, 7].</description><subject>52A39</subject><subject>52A39: CONVEX AND DISCRETE GEOMETRY</subject><subject>CONVEX AND DISCRETE GEOMETRY</subject><subject>General Convexity</subject><subject>Mixed volumes and related topics</subject><issn>0025-5793</issn><issn>2041-7942</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNqFkE9PAjEQxRujiYh-AG9787Ta6b_dPSJRMGKMAY23pnRnoQiUtGsQP71LIF40mkwyhzfvl_eGkHOglwDAroaUMimzglNKQSgmD0iLUQFpVgh2SFpbOd3qx-QkxhmlUuUCWkR0kjj1oU5WwfsqaaZvyrWbYLiIiZ2aYGyNwX2a2vllUk_RB1yckqPKzCOe7XebPN_ejLr9dPDYu-t2BqkVksu0yVWIKleUCl5asGgFVxZQIhXCgKmkYlBUdAxclVwVOWZlbnMLucFCIONtAjuuDT7GgJVeBbcwYaOB6m1t_aN24-nuPGs3x83_Bv0wuv-Nku4oLtb48U0x4U2rjGdSq96T7r3wazkUoF-be75Pahbj4MoJ6pl_D8vmO39k_QL_ynla</recordid><startdate>199512</startdate><enddate>199512</enddate><creator>Klain, Daniel A.</creator><general>London Mathematical Society</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>199512</creationdate><title>A short proof of Hadwiger's characterization theorem</title><author>Klain, Daniel A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4535-11294f860043dc1cec436c1e5e044a1af56219f0b136d3698e7d8c8c18ae94e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>52A39</topic><topic>52A39: CONVEX AND DISCRETE GEOMETRY</topic><topic>CONVEX AND DISCRETE GEOMETRY</topic><topic>General Convexity</topic><topic>Mixed volumes and related topics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Klain, Daniel A.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Mathematika</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Klain, Daniel A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A short proof of Hadwiger's characterization theorem</atitle><jtitle>Mathematika</jtitle><addtitle>Mathematika</addtitle><date>1995-12</date><risdate>1995</risdate><volume>42</volume><issue>2</issue><spage>329</spage><epage>339</epage><pages>329-339</pages><issn>0025-5793</issn><eissn>2041-7942</eissn><abstract>One of the most beautiful and important results in geometric convexity is Hadwiger's characterization theorem for the quermassintegrals. Hadwiger's theorem classifies all continuous rigid motion invariant valuations on convex bodies as consisting of the linear span of the quermassintegrals (or, equivalently, of the intrinsic volumes) [4]. Hadwiger's characterization leads to effortless proofs of numerous results in integral geometry, including various kinematic formulas [7, 9] and the mean projection formulas for convex bodies [10]. Hadwiger's result also provides a connection between rigid motion invariant set functions and symmetric polynomials [1, 7].</abstract><cop>London, UK</cop><pub>London Mathematical Society</pub><doi>10.1112/S0025579300014625</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-5793 |
ispartof | Mathematika, 1995-12, Vol.42 (2), p.329-339 |
issn | 0025-5793 2041-7942 |
language | eng |
recordid | cdi_crossref_primary_10_1112_S0025579300014625 |
source | Wiley Online Library All Journals |
subjects | 52A39 52A39: CONVEX AND DISCRETE GEOMETRY CONVEX AND DISCRETE GEOMETRY General Convexity Mixed volumes and related topics |
title | A short proof of Hadwiger's characterization theorem |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A25%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cambridge_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20short%20proof%20of%20Hadwiger's%20characterization%20theorem&rft.jtitle=Mathematika&rft.au=Klain,%20Daniel%20A.&rft.date=1995-12&rft.volume=42&rft.issue=2&rft.spage=329&rft.epage=339&rft.pages=329-339&rft.issn=0025-5793&rft.eissn=2041-7942&rft_id=info:doi/10.1112/S0025579300014625&rft_dat=%3Ccambridge_cross%3E10_1112_S0025579300014625%3C/cambridge_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cupid=10_1112_S0025579300014625&rfr_iscdi=true |