A short proof of Hadwiger's characterization theorem
One of the most beautiful and important results in geometric convexity is Hadwiger's characterization theorem for the quermassintegrals. Hadwiger's theorem classifies all continuous rigid motion invariant valuations on convex bodies as consisting of the linear span of the quermassintegrals...
Gespeichert in:
Veröffentlicht in: | Mathematika 1995-12, Vol.42 (2), p.329-339 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | One of the most beautiful and important results in geometric convexity is Hadwiger's characterization theorem for the quermassintegrals. Hadwiger's theorem classifies all continuous rigid motion invariant valuations on convex bodies as consisting of the linear span of the quermassintegrals (or, equivalently, of the intrinsic volumes) [4]. Hadwiger's characterization leads to effortless proofs of numerous results in integral geometry, including various kinematic formulas [7, 9] and the mean projection formulas for convex bodies [10]. Hadwiger's result also provides a connection between rigid motion invariant set functions and symmetric polynomials [1, 7]. |
---|---|
ISSN: | 0025-5793 2041-7942 |
DOI: | 10.1112/S0025579300014625 |