Approximation properties of measures generated by continuous set functions

Let X be a metric space and τ a non-negative function on the subsets of X. By the well-known Carathéodory process, we generate outer measures μδ(τ), for δ > 0, and (see §3). When, for every A ⊂ X, τA = (diamA)s for s ≥ 0, μ(τ) is the Hausdorff s-dimensional measure, and, if τA = h(diam A) for a m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematika 1962-12, Vol.9 (2), p.145-156
Hauptverfasser: Sion, M., Sjerve, D.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let X be a metric space and τ a non-negative function on the subsets of X. By the well-known Carathéodory process, we generate outer measures μδ(τ), for δ > 0, and (see §3). When, for every A ⊂ X, τA = (diamA)s for s ≥ 0, μ(τ) is the Hausdorff s-dimensional measure, and, if τA = h(diam A) for a monotone continuous function h with h(0) = 0, μ(τ) is the Hausdorff h-measure. In both of these cases, μ(τ) has been extensively studied.
ISSN:0025-5793
2041-7942
DOI:10.1112/S0025579300003235