TREES IN RENORMING THEORY

A systematic study is made of the isomorphic properties of the Banach space ${\cal C}_0(\Upsilon)$ of continuous functions, vanishing at infinity, on a tree $\Upsilon$, equipped with its natural locally compact topology. Necessary and sufficient conditions, expressed in terms of the combinatorial st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the London Mathematical Society 1999-05, Vol.78 (3), p.541-584
1. Verfasser: HAYDON, RICHARD
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A systematic study is made of the isomorphic properties of the Banach space ${\cal C}_0(\Upsilon)$ of continuous functions, vanishing at infinity, on a tree $\Upsilon$, equipped with its natural locally compact topology. Necessary and sufficient conditions, expressed in terms of the combinatorial structure of $\Upsilon$, are obtained for ${\cal C}_0(\Upsilon)$ to possess equivalent norms with various good properties of smoothness and strict convexity. These characterizations, together with the construction of appropriate trees, lead to counter-examples refuting a number of conjectures about renormings. It is shown that the existence of a Fr\'echet-smooth renorming is not inherited by quotients, that strict convexifiability is not a three-space property and that neither the Kadec property nor the MLUR property implies the existence of an equivalent norm which is locally uniformly rotund. An example is also given of a space with a smooth norm but no equivalent strictly convex norm. Finally, it is shown that ${\cal C}_0(\Upsilon)$ always admits a ${\cal C}^\infty$ `bump-function', even in cases where no good norms exist.
ISSN:0024-6115
1460-244X
DOI:10.1112/S0024611599001768