TREES IN RENORMING THEORY
A systematic study is made of the isomorphic properties of the Banach space ${\cal C}_0(\Upsilon)$ of continuous functions, vanishing at infinity, on a tree $\Upsilon$, equipped with its natural locally compact topology. Necessary and sufficient conditions, expressed in terms of the combinatorial st...
Gespeichert in:
Veröffentlicht in: | Proceedings of the London Mathematical Society 1999-05, Vol.78 (3), p.541-584 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A systematic study is made of the isomorphic properties of the Banach space ${\cal C}_0(\Upsilon)$ of continuous functions, vanishing at infinity, on a tree $\Upsilon$, equipped with its natural locally compact topology. Necessary and sufficient conditions, expressed in terms of the combinatorial structure of $\Upsilon$, are obtained for ${\cal C}_0(\Upsilon)$ to possess equivalent norms with various good properties of smoothness and strict convexity. These characterizations, together with the construction of appropriate trees, lead to counter-examples refuting a number of conjectures about renormings. It is shown that the existence of a Fr\'echet-smooth renorming is not inherited by quotients, that strict convexifiability is not a three-space property and that neither the Kadec property nor the MLUR property implies the existence of an equivalent norm which is locally uniformly rotund. An example is also given of a space with a smooth norm but no equivalent strictly convex norm. Finally, it is shown that ${\cal C}_0(\Upsilon)$ always admits a ${\cal C}^\infty$ `bump-function', even in cases where no good norms exist. |
---|---|
ISSN: | 0024-6115 1460-244X |
DOI: | 10.1112/S0024611599001768 |