ASYMPTOTIC BEHAVIOR OF SOLUTIONS OF DIFFERENTIAL EQUATIONS WITH VARIABLE DELAYS
The authors consider the system of forced differential equations with variable delays $$x'(t) + \sum^N_{j=1}B_j(t)x(t-\tau_j(t)) = F(t)\eqno(*)$$ where $B_j(t)$ is a continuous $n\times n$ matrix on ${{\Bbb R}^+}$, $F\in C({{\Bbb R}^+, {\Bbb R}^n})$ and $\tau \in C({{\Bbb R}^+, {\Bbb R}^+})$. U...
Gespeichert in:
Veröffentlicht in: | Proceedings of the London Mathematical Society 2000-07, Vol.81 (1), p.72-92 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The authors consider the system of forced
differential equations with variable delays
$$x'(t) + \sum^N_{j=1}B_j(t)x(t-\tau_j(t))
= F(t)\eqno(*)$$
where $B_j(t)$ is a continuous $n\times n$
matrix on ${{\Bbb R}^+}$, $F\in C({{\Bbb R}^+,
{\Bbb R}^n})$
and $\tau \in C({{\Bbb R}^+, {\Bbb R}^+})$.
Using Razumikhin-type techniques and
Liapunov's direct method, they establish
conditions to ensure the ultimate
boundedness and the global attractivity of solutions
of $(*)$, and when $F(t) \equiv 0$, the
asymptotic stability of the zero solution.
Under those same conditions, they also show that
$\int^{+\infty}_0\sum_{j=1}^{N}|B_j(t)|\,dt
= +\infty$ is a necessary and
sufficient condition for all of the above properties to hold. 1991 Mathematics Subject Classification: 34K15, 34C10. |
---|---|
ISSN: | 0024-6115 1460-244X |
DOI: | 10.1112/S0024611500012429 |