THE ALGEBRAIC GEOMETRY OF THE KOSTANT–KIRILLOV FORM

Large classes of integrable Hamiltonian systems can be expressed as systems over coadjoint orbits in a loop algebra defined over a semi-simple Lie algebra [gfr ]. These systems can then be integrated via the classical, symplectic Liouville–Arnold method. On the other hand, the existence of spectral...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the London Mathematical Society 1997-12, Vol.56 (3), p.504-518
1. Verfasser: HURTUBISE, J. C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 518
container_issue 3
container_start_page 504
container_title Journal of the London Mathematical Society
container_volume 56
creator HURTUBISE, J. C.
description Large classes of integrable Hamiltonian systems can be expressed as systems over coadjoint orbits in a loop algebra defined over a semi-simple Lie algebra [gfr ]. These systems can then be integrated via the classical, symplectic Liouville–Arnold method. On the other hand, the existence of spectral curves as constants of motion allows one to integrate these systems in terms of flows of line bundles on the curves. This note links the symplectic geometry of the coadjoint orbits with the algebraic geometry of these curves for arbitrary semi-simple [gfr ], which then allows us to reconcile the two integration methods.
doi_str_mv 10.1112/S0024610797005590
format Article
fullrecord <record><control><sourceid>cambridge_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1112_S0024610797005590</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1112_S0024610797005590</cupid><sourcerecordid>10_1112_S0024610797005590</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3734-34da8d529b1de09f9d6e5713704f965bb4483ae3bc6f61f46b9e67a1c255047b3</originalsourceid><addsrcrecordid>eNqFkM1Og0AUhSdGE2v1AdzxAugd5q-zpA1QWiqG4u9mwsBgqK01oNHufAff0CcR0saNia7u4tzv3nMOQqcYzjDGzvkcwKEcg5ACgDEJe6iHKZe2EAz2Ua-T7U4_REdNswDABIPTQywde5YbBd4wccORFXjxzEuTOyv2rU6ZxvPUvUi_Pj6nYRJGUXxt-XEyO0YHZbZszMlu9tGV76WjsR3FQThyIzsnglCb0CIbFMyRGhcGZCkLbpjARAAtJWdaUzogmSE65yXHJeVaGi4ynDuMARWa9BHe3s3rddPUplTPdbXK6o3CoLrc6lfulhFb5q1ams3_gJpEszm0_1rS3pJV82Lef8isflRcEMHU-PZeXQZDeTNJJspv98nOXbbSdVU8GLVYv9ZPbSN_-PsGEeNztw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>THE ALGEBRAIC GEOMETRY OF THE KOSTANT–KIRILLOV FORM</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Alma/SFX Local Collection</source><creator>HURTUBISE, J. C.</creator><creatorcontrib>HURTUBISE, J. C.</creatorcontrib><description>Large classes of integrable Hamiltonian systems can be expressed as systems over coadjoint orbits in a loop algebra defined over a semi-simple Lie algebra [gfr ]. These systems can then be integrated via the classical, symplectic Liouville–Arnold method. On the other hand, the existence of spectral curves as constants of motion allows one to integrate these systems in terms of flows of line bundles on the curves. This note links the symplectic geometry of the coadjoint orbits with the algebraic geometry of these curves for arbitrary semi-simple [gfr ], which then allows us to reconcile the two integration methods.</description><identifier>ISSN: 0024-6107</identifier><identifier>EISSN: 1469-7750</identifier><identifier>DOI: 10.1112/S0024610797005590</identifier><language>eng</language><publisher>Cambridge University Press</publisher><subject>Notes and Papers</subject><ispartof>Journal of the London Mathematical Society, 1997-12, Vol.56 (3), p.504-518</ispartof><rights>The London Mathematical Society 1997</rights><rights>1997 London Mathematical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3734-34da8d529b1de09f9d6e5713704f965bb4483ae3bc6f61f46b9e67a1c255047b3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1112%2FS0024610797005590$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1112%2FS0024610797005590$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>HURTUBISE, J. C.</creatorcontrib><title>THE ALGEBRAIC GEOMETRY OF THE KOSTANT–KIRILLOV FORM</title><title>Journal of the London Mathematical Society</title><addtitle>J. Lond. Math. Soc</addtitle><description>Large classes of integrable Hamiltonian systems can be expressed as systems over coadjoint orbits in a loop algebra defined over a semi-simple Lie algebra [gfr ]. These systems can then be integrated via the classical, symplectic Liouville–Arnold method. On the other hand, the existence of spectral curves as constants of motion allows one to integrate these systems in terms of flows of line bundles on the curves. This note links the symplectic geometry of the coadjoint orbits with the algebraic geometry of these curves for arbitrary semi-simple [gfr ], which then allows us to reconcile the two integration methods.</description><subject>Notes and Papers</subject><issn>0024-6107</issn><issn>1469-7750</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNqFkM1Og0AUhSdGE2v1AdzxAugd5q-zpA1QWiqG4u9mwsBgqK01oNHufAff0CcR0saNia7u4tzv3nMOQqcYzjDGzvkcwKEcg5ACgDEJe6iHKZe2EAz2Ua-T7U4_REdNswDABIPTQywde5YbBd4wccORFXjxzEuTOyv2rU6ZxvPUvUi_Pj6nYRJGUXxt-XEyO0YHZbZszMlu9tGV76WjsR3FQThyIzsnglCb0CIbFMyRGhcGZCkLbpjARAAtJWdaUzogmSE65yXHJeVaGi4ynDuMARWa9BHe3s3rddPUplTPdbXK6o3CoLrc6lfulhFb5q1ams3_gJpEszm0_1rS3pJV82Lef8isflRcEMHU-PZeXQZDeTNJJspv98nOXbbSdVU8GLVYv9ZPbSN_-PsGEeNztw</recordid><startdate>199712</startdate><enddate>199712</enddate><creator>HURTUBISE, J. C.</creator><general>Cambridge University Press</general><general>Oxford University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>199712</creationdate><title>THE ALGEBRAIC GEOMETRY OF THE KOSTANT–KIRILLOV FORM</title><author>HURTUBISE, J. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3734-34da8d529b1de09f9d6e5713704f965bb4483ae3bc6f61f46b9e67a1c255047b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Notes and Papers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>HURTUBISE, J. C.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Journal of the London Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>HURTUBISE, J. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>THE ALGEBRAIC GEOMETRY OF THE KOSTANT–KIRILLOV FORM</atitle><jtitle>Journal of the London Mathematical Society</jtitle><addtitle>J. Lond. Math. Soc</addtitle><date>1997-12</date><risdate>1997</risdate><volume>56</volume><issue>3</issue><spage>504</spage><epage>518</epage><pages>504-518</pages><issn>0024-6107</issn><eissn>1469-7750</eissn><abstract>Large classes of integrable Hamiltonian systems can be expressed as systems over coadjoint orbits in a loop algebra defined over a semi-simple Lie algebra [gfr ]. These systems can then be integrated via the classical, symplectic Liouville–Arnold method. On the other hand, the existence of spectral curves as constants of motion allows one to integrate these systems in terms of flows of line bundles on the curves. This note links the symplectic geometry of the coadjoint orbits with the algebraic geometry of these curves for arbitrary semi-simple [gfr ], which then allows us to reconcile the two integration methods.</abstract><pub>Cambridge University Press</pub><doi>10.1112/S0024610797005590</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0024-6107
ispartof Journal of the London Mathematical Society, 1997-12, Vol.56 (3), p.504-518
issn 0024-6107
1469-7750
language eng
recordid cdi_crossref_primary_10_1112_S0024610797005590
source Wiley Online Library Journals Frontfile Complete; Alma/SFX Local Collection
subjects Notes and Papers
title THE ALGEBRAIC GEOMETRY OF THE KOSTANT–KIRILLOV FORM
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T00%3A32%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cambridge_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=THE%20ALGEBRAIC%20GEOMETRY%20OF%20THE%20KOSTANT%E2%80%93KIRILLOV%20FORM&rft.jtitle=Journal%20of%20the%20London%20Mathematical%20Society&rft.au=HURTUBISE,%20J.%20C.&rft.date=1997-12&rft.volume=56&rft.issue=3&rft.spage=504&rft.epage=518&rft.pages=504-518&rft.issn=0024-6107&rft.eissn=1469-7750&rft_id=info:doi/10.1112/S0024610797005590&rft_dat=%3Ccambridge_cross%3E10_1112_S0024610797005590%3C/cambridge_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cupid=10_1112_S0024610797005590&rfr_iscdi=true