THE ALGEBRAIC GEOMETRY OF THE KOSTANT–KIRILLOV FORM

Large classes of integrable Hamiltonian systems can be expressed as systems over coadjoint orbits in a loop algebra defined over a semi-simple Lie algebra [gfr ]. These systems can then be integrated via the classical, symplectic Liouville–Arnold method. On the other hand, the existence of spectral...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the London Mathematical Society 1997-12, Vol.56 (3), p.504-518
1. Verfasser: HURTUBISE, J. C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Large classes of integrable Hamiltonian systems can be expressed as systems over coadjoint orbits in a loop algebra defined over a semi-simple Lie algebra [gfr ]. These systems can then be integrated via the classical, symplectic Liouville–Arnold method. On the other hand, the existence of spectral curves as constants of motion allows one to integrate these systems in terms of flows of line bundles on the curves. This note links the symplectic geometry of the coadjoint orbits with the algebraic geometry of these curves for arbitrary semi-simple [gfr ], which then allows us to reconcile the two integration methods.
ISSN:0024-6107
1469-7750
DOI:10.1112/S0024610797005590