THE ALGEBRAIC GEOMETRY OF THE KOSTANT–KIRILLOV FORM
Large classes of integrable Hamiltonian systems can be expressed as systems over coadjoint orbits in a loop algebra defined over a semi-simple Lie algebra [gfr ]. These systems can then be integrated via the classical, symplectic Liouville–Arnold method. On the other hand, the existence of spectral...
Gespeichert in:
Veröffentlicht in: | Journal of the London Mathematical Society 1997-12, Vol.56 (3), p.504-518 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Large classes of integrable Hamiltonian systems can be expressed
as systems over coadjoint orbits in
a loop algebra defined over a semi-simple Lie algebra [gfr ].
These systems can then be integrated via the
classical, symplectic Liouville–Arnold method. On the other hand,
the existence of spectral curves as
constants of motion allows one to integrate these systems in terms of
flows of line bundles on the curves.
This note links the symplectic geometry of the coadjoint orbits with the
algebraic geometry of these curves
for arbitrary semi-simple [gfr ], which then allows us to reconcile the
two integration methods. |
---|---|
ISSN: | 0024-6107 1469-7750 |
DOI: | 10.1112/S0024610797005590 |