A REMEZ-TYPE THEOREM FOR HOMOGENEOUS POLYNOMIALS
Remez-type inequalities provide upper bounds for the uniform norms of polynomials $p$ on given compact sets $K$, provided that $|p(x)|\leq1$ for every $x\in K\setminus E$, where $E$ is a subset of $K$ of small measure. In this paper we prove sharp Remez-type inequalities for homogeneous polynomials...
Gespeichert in:
Veröffentlicht in: | Journal of the London Mathematical Society 2006-06, Vol.73 (3), p.783-796 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Remez-type inequalities provide upper bounds for the uniform norms of polynomials $p$ on given compact sets $K$, provided that $|p(x)|\leq1$ for every $x\in K\setminus E$, where $E$ is a subset of $K$ of small measure. In this paper we prove sharp Remez-type inequalities for homogeneous polynomials on star-like surfaces in $\mathbb{R}^d$. In particular, this covers the case of spherical polynomials (when $d=2$ we deduce a result of Erdélyi for univariate trigonometric polynomials). |
---|---|
ISSN: | 0024-6107 1469-7750 |
DOI: | 10.1112/S0024610706022770 |