A REMEZ-TYPE THEOREM FOR HOMOGENEOUS POLYNOMIALS

Remez-type inequalities provide upper bounds for the uniform norms of polynomials $p$ on given compact sets $K$, provided that $|p(x)|\leq1$ for every $x\in K\setminus E$, where $E$ is a subset of $K$ of small measure. In this paper we prove sharp Remez-type inequalities for homogeneous polynomials...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the London Mathematical Society 2006-06, Vol.73 (3), p.783-796
Hauptverfasser: KROÓ, A., SAFF, E. B., YATTSELEV, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Remez-type inequalities provide upper bounds for the uniform norms of polynomials $p$ on given compact sets $K$, provided that $|p(x)|\leq1$ for every $x\in K\setminus E$, where $E$ is a subset of $K$ of small measure. In this paper we prove sharp Remez-type inequalities for homogeneous polynomials on star-like surfaces in $\mathbb{R}^d$. In particular, this covers the case of spherical polynomials (when $d=2$ we deduce a result of Erdélyi for univariate trigonometric polynomials).
ISSN:0024-6107
1469-7750
DOI:10.1112/S0024610706022770