COMPACT ENDOMORPHISMS OF BANACH ALGEBRAS OF INFINITELY DIFFERENTIABLE FUNCTIONS

Let $(M_n)$ be a sequence of positive numbers satisfying $M_0\,{=}\,1$ and \[\displaystyle \frac{M_{n+m}}{M_n M_m}\,{\geq}\,{{n+m}\choose{m}} \] for all non-negative integers $m$, $n$. Let \[D([0,1], M)=\left\{f\,{\in}\,C^{\infty}([0,1]):\|f\|_{D}=\sum_{n=0}^{\infty} \frac{\|f^{(n)}\|_{\infty}}{M_n}...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the London Mathematical Society 2004-04, Vol.69 (2), p.489-502
Hauptverfasser: FEINSTEIN, JOEL F., KAMOWITZ, HERBERT
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 502
container_issue 2
container_start_page 489
container_title Journal of the London Mathematical Society
container_volume 69
creator FEINSTEIN, JOEL F.
KAMOWITZ, HERBERT
description Let $(M_n)$ be a sequence of positive numbers satisfying $M_0\,{=}\,1$ and \[\displaystyle \frac{M_{n+m}}{M_n M_m}\,{\geq}\,{{n+m}\choose{m}} \] for all non-negative integers $m$, $n$. Let \[D([0,1], M)=\left\{f\,{\in}\,C^{\infty}([0,1]):\|f\|_{D}=\sum_{n=0}^{\infty} \frac{\|f^{(n)}\|_{\infty}}{M_n}\,{
doi_str_mv 10.1112/S0024610703005131
format Article
fullrecord <record><control><sourceid>cambridge_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1112_S0024610703005131</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1112_S0024610703005131</cupid><sourcerecordid>10_1112_S0024610703005131</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3739-ca9e519c670c9ee37b8626fbee794cb0fd540d7279e2a776b3067e919ff0f2f83</originalsourceid><addsrcrecordid>eNqFkM1Og0AUhSdGE2v1AdzxAugdBuZ2lpRCO4a_FJpUNxOgg6G2akCjfXupbdyY6Oom55zv5uQQck3hhlJq3WYAls0pIDAAhzJ6QgbU5sJEdOCUDPa2uffPyUXXrQH6CFgDknhJlLpebvjxJImSeTqTWZQZSWCM3dj1ZoYbTv3x3P2WZBzIWOZ-eG9MZBD4cz_OpTsOfSNYxF4ukzi7JGd1sen01fEOySLwc29mhslUem5oVgyZMKtCaIeKiiNUQmuG5YhbvC61RmFXJdQrx4YVWii0VSDykgFHLaioa6itesSGhB7-Vu1L17W6Vq9tsy3anaKg9ouoX4v0DB6Yj2ajd_8D6i6MMrBHoifNA9l0b_rzhyzaJ8WRoaNmywflidjCFJcq7fPs2K7Ylm2zetRq_fLePveL_NHvC7YOebk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>COMPACT ENDOMORPHISMS OF BANACH ALGEBRAS OF INFINITELY DIFFERENTIABLE FUNCTIONS</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Alma/SFX Local Collection</source><creator>FEINSTEIN, JOEL F. ; KAMOWITZ, HERBERT</creator><creatorcontrib>FEINSTEIN, JOEL F. ; KAMOWITZ, HERBERT</creatorcontrib><description>Let $(M_n)$ be a sequence of positive numbers satisfying $M_0\,{=}\,1$ and \[\displaystyle \frac{M_{n+m}}{M_n M_m}\,{\geq}\,{{n+m}\choose{m}} \] for all non-negative integers $m$, $n$. Let \[D([0,1], M)=\left\{f\,{\in}\,C^{\infty}([0,1]):\|f\|_{D}=\sum_{n=0}^{\infty} \frac{\|f^{(n)}\|_{\infty}}{M_n}\,{&lt;}\,\infty\right\}.\] With pointwise addition and multiplication, $D([0,1],M)$ is a unital commutative semisimple Banach algebra. If $\lim_{n\to\infty} (n!/M_n)^{1/n}\,{=}\,0,$ then the maximal ideal space of the algebra is $[0,1]$, and every non-zero endomorphism $T$ has the form $Tf(x)\,{=}\,f(\phi(x))$ for some selfmap $\phi$ of the unit interval. The authors have previously shown for a wide class of $\phi$ mapping the unit interval to itself that if $\|\phi'\|_\infty\,{&lt;}\,1$, then $\phi$ induces a compact endomorphism. The paper investigates the extent to which this condition is necessary, and the spectra of all compact endomorphisms of $D([0,1],M)$ are determined. Some of the authors' earlier results on general endomorphisms of $D([0,1],M)$ are simplified and strengthened.</description><identifier>ISSN: 0024-6107</identifier><identifier>EISSN: 1469-7750</identifier><identifier>DOI: 10.1112/S0024610703005131</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Notes and Papers</subject><ispartof>Journal of the London Mathematical Society, 2004-04, Vol.69 (2), p.489-502</ispartof><rights>The London Mathematical Society 2004</rights><rights>2004 London Mathematical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3739-ca9e519c670c9ee37b8626fbee794cb0fd540d7279e2a776b3067e919ff0f2f83</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1112%2FS0024610703005131$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1112%2FS0024610703005131$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>FEINSTEIN, JOEL F.</creatorcontrib><creatorcontrib>KAMOWITZ, HERBERT</creatorcontrib><title>COMPACT ENDOMORPHISMS OF BANACH ALGEBRAS OF INFINITELY DIFFERENTIABLE FUNCTIONS</title><title>Journal of the London Mathematical Society</title><addtitle>J. Lond. Math. Soc</addtitle><description>Let $(M_n)$ be a sequence of positive numbers satisfying $M_0\,{=}\,1$ and \[\displaystyle \frac{M_{n+m}}{M_n M_m}\,{\geq}\,{{n+m}\choose{m}} \] for all non-negative integers $m$, $n$. Let \[D([0,1], M)=\left\{f\,{\in}\,C^{\infty}([0,1]):\|f\|_{D}=\sum_{n=0}^{\infty} \frac{\|f^{(n)}\|_{\infty}}{M_n}\,{&lt;}\,\infty\right\}.\] With pointwise addition and multiplication, $D([0,1],M)$ is a unital commutative semisimple Banach algebra. If $\lim_{n\to\infty} (n!/M_n)^{1/n}\,{=}\,0,$ then the maximal ideal space of the algebra is $[0,1]$, and every non-zero endomorphism $T$ has the form $Tf(x)\,{=}\,f(\phi(x))$ for some selfmap $\phi$ of the unit interval. The authors have previously shown for a wide class of $\phi$ mapping the unit interval to itself that if $\|\phi'\|_\infty\,{&lt;}\,1$, then $\phi$ induces a compact endomorphism. The paper investigates the extent to which this condition is necessary, and the spectra of all compact endomorphisms of $D([0,1],M)$ are determined. Some of the authors' earlier results on general endomorphisms of $D([0,1],M)$ are simplified and strengthened.</description><subject>Notes and Papers</subject><issn>0024-6107</issn><issn>1469-7750</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqFkM1Og0AUhSdGE2v1AdzxAugdBuZ2lpRCO4a_FJpUNxOgg6G2akCjfXupbdyY6Oom55zv5uQQck3hhlJq3WYAls0pIDAAhzJ6QgbU5sJEdOCUDPa2uffPyUXXrQH6CFgDknhJlLpebvjxJImSeTqTWZQZSWCM3dj1ZoYbTv3x3P2WZBzIWOZ-eG9MZBD4cz_OpTsOfSNYxF4ukzi7JGd1sen01fEOySLwc29mhslUem5oVgyZMKtCaIeKiiNUQmuG5YhbvC61RmFXJdQrx4YVWii0VSDykgFHLaioa6itesSGhB7-Vu1L17W6Vq9tsy3anaKg9ouoX4v0DB6Yj2ajd_8D6i6MMrBHoifNA9l0b_rzhyzaJ8WRoaNmywflidjCFJcq7fPs2K7Ylm2zetRq_fLePveL_NHvC7YOebk</recordid><startdate>200404</startdate><enddate>200404</enddate><creator>FEINSTEIN, JOEL F.</creator><creator>KAMOWITZ, HERBERT</creator><general>Cambridge University Press</general><general>Oxford University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200404</creationdate><title>COMPACT ENDOMORPHISMS OF BANACH ALGEBRAS OF INFINITELY DIFFERENTIABLE FUNCTIONS</title><author>FEINSTEIN, JOEL F. ; KAMOWITZ, HERBERT</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3739-ca9e519c670c9ee37b8626fbee794cb0fd540d7279e2a776b3067e919ff0f2f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Notes and Papers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>FEINSTEIN, JOEL F.</creatorcontrib><creatorcontrib>KAMOWITZ, HERBERT</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Journal of the London Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>FEINSTEIN, JOEL F.</au><au>KAMOWITZ, HERBERT</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>COMPACT ENDOMORPHISMS OF BANACH ALGEBRAS OF INFINITELY DIFFERENTIABLE FUNCTIONS</atitle><jtitle>Journal of the London Mathematical Society</jtitle><addtitle>J. Lond. Math. Soc</addtitle><date>2004-04</date><risdate>2004</risdate><volume>69</volume><issue>2</issue><spage>489</spage><epage>502</epage><pages>489-502</pages><issn>0024-6107</issn><eissn>1469-7750</eissn><abstract>Let $(M_n)$ be a sequence of positive numbers satisfying $M_0\,{=}\,1$ and \[\displaystyle \frac{M_{n+m}}{M_n M_m}\,{\geq}\,{{n+m}\choose{m}} \] for all non-negative integers $m$, $n$. Let \[D([0,1], M)=\left\{f\,{\in}\,C^{\infty}([0,1]):\|f\|_{D}=\sum_{n=0}^{\infty} \frac{\|f^{(n)}\|_{\infty}}{M_n}\,{&lt;}\,\infty\right\}.\] With pointwise addition and multiplication, $D([0,1],M)$ is a unital commutative semisimple Banach algebra. If $\lim_{n\to\infty} (n!/M_n)^{1/n}\,{=}\,0,$ then the maximal ideal space of the algebra is $[0,1]$, and every non-zero endomorphism $T$ has the form $Tf(x)\,{=}\,f(\phi(x))$ for some selfmap $\phi$ of the unit interval. The authors have previously shown for a wide class of $\phi$ mapping the unit interval to itself that if $\|\phi'\|_\infty\,{&lt;}\,1$, then $\phi$ induces a compact endomorphism. The paper investigates the extent to which this condition is necessary, and the spectra of all compact endomorphisms of $D([0,1],M)$ are determined. Some of the authors' earlier results on general endomorphisms of $D([0,1],M)$ are simplified and strengthened.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1112/S0024610703005131</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0024-6107
ispartof Journal of the London Mathematical Society, 2004-04, Vol.69 (2), p.489-502
issn 0024-6107
1469-7750
language eng
recordid cdi_crossref_primary_10_1112_S0024610703005131
source Wiley Online Library Journals Frontfile Complete; Alma/SFX Local Collection
subjects Notes and Papers
title COMPACT ENDOMORPHISMS OF BANACH ALGEBRAS OF INFINITELY DIFFERENTIABLE FUNCTIONS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T00%3A08%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cambridge_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=COMPACT%20ENDOMORPHISMS%20OF%20BANACH%20ALGEBRAS%20OF%20INFINITELY%20DIFFERENTIABLE%20FUNCTIONS&rft.jtitle=Journal%20of%20the%20London%20Mathematical%20Society&rft.au=FEINSTEIN,%20JOEL%20F.&rft.date=2004-04&rft.volume=69&rft.issue=2&rft.spage=489&rft.epage=502&rft.pages=489-502&rft.issn=0024-6107&rft.eissn=1469-7750&rft_id=info:doi/10.1112/S0024610703005131&rft_dat=%3Ccambridge_cross%3E10_1112_S0024610703005131%3C/cambridge_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cupid=10_1112_S0024610703005131&rfr_iscdi=true