ASYMPTOTIC EXPANSIONS OF MULTIPLE ZETA FUNCTIONS AND POWER MEAN VALUES OF HURWITZ ZETA FUNCTIONS

Let $\zeta(s, \alpha)$ be the Hurwitz zeta function with parameter $\alpha$ . Power mean values of the form $\sum^q_{a=1}\zeta(s,a/q)^h$ or $\sum^q_{a=1}|\zeta(s,a/q)|^{2h}$ are studied, where $q$ and $h$ are positive integers. These mean values can be written as linear combinations of $\sum^q_{a=1}...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the London Mathematical Society 2002-08, Vol.66 (1), p.41-60
Hauptverfasser: EGAMI, SHIGEKI, MATSUMOTO, KOHJI
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let $\zeta(s, \alpha)$ be the Hurwitz zeta function with parameter $\alpha$ . Power mean values of the form $\sum^q_{a=1}\zeta(s,a/q)^h$ or $\sum^q_{a=1}|\zeta(s,a/q)|^{2h}$ are studied, where $q$ and $h$ are positive integers. These mean values can be written as linear combinations of $\sum^q_{a=1}\zeta_r(s_1,\ldots,s_r;a/q)$ , where $\zeta_r(s_1,\ldots,s_r;\alpha)$ is a generalization of Euler–Zagier multiple zeta sums. The Mellin–Barnes integral formula is used to prove an asymptotic expansion of $\sum^q_{a=1}\zeta_r(s_1,\ldots,s_r;a/q)$ , with respect to $q$ . Hence a general way of deducing asymptotic expansion formulas for $\sum^q_{a=1}\zeta(s,a/q)^h$ and $\sum^q_{a=1}|\zeta(s,a/q)|^{2h}$ is obtained. In particular, the asymptotic expansion of $\sum^q_{a=1}\zeta(1/2,a/q)^3$ with respect to $q$ is written down.
ISSN:0024-6107
1469-7750
DOI:10.1112/S0024610702003253