ASYMPTOTIC EXPANSIONS OF MULTIPLE ZETA FUNCTIONS AND POWER MEAN VALUES OF HURWITZ ZETA FUNCTIONS
Let $\zeta(s, \alpha)$ be the Hurwitz zeta function with parameter $\alpha$ . Power mean values of the form $\sum^q_{a=1}\zeta(s,a/q)^h$ or $\sum^q_{a=1}|\zeta(s,a/q)|^{2h}$ are studied, where $q$ and $h$ are positive integers. These mean values can be written as linear combinations of $\sum^q_{a=1}...
Gespeichert in:
Veröffentlicht in: | Journal of the London Mathematical Society 2002-08, Vol.66 (1), p.41-60 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
$\zeta(s, \alpha)$
be the Hurwitz zeta function with parameter
$\alpha$
. Power mean values of the form
$\sum^q_{a=1}\zeta(s,a/q)^h$
or
$\sum^q_{a=1}|\zeta(s,a/q)|^{2h}$
are studied, where
$q$
and
$h$
are positive integers. These mean values can be written as linear combinations of
$\sum^q_{a=1}\zeta_r(s_1,\ldots,s_r;a/q)$
, where
$\zeta_r(s_1,\ldots,s_r;\alpha)$
is a generalization of Euler–Zagier multiple zeta sums. The Mellin–Barnes integral formula is used to prove an asymptotic expansion of
$\sum^q_{a=1}\zeta_r(s_1,\ldots,s_r;a/q)$
, with respect to
$q$
. Hence a general way of deducing asymptotic expansion formulas for
$\sum^q_{a=1}\zeta(s,a/q)^h$
and
$\sum^q_{a=1}|\zeta(s,a/q)|^{2h}$
is obtained. In particular, the asymptotic expansion of
$\sum^q_{a=1}\zeta(1/2,a/q)^3$
with respect to
$q$
is written down. |
---|---|
ISSN: | 0024-6107 1469-7750 |
DOI: | 10.1112/S0024610702003253 |