ANTIBOUND STATES AND EXPONENTIALLY DECAYING STURM–LIOUVILLE POTENTIALS

We consider the Sturm–Liouville equation \renewcommand{\theequation}{1.\arabic{equation}} \begin{equation} y^{\prime\prime}(x)+\{\lambda - q(x)\}y(x) = 0\quad (0 \le x < \infty) \end{equation} with a boundary condition at $x = 0$ which can be either the Dirichlet condition \begin{equation} y(0) =...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the London Mathematical Society 2002-06, Vol.65 (3), p.624-638
1. Verfasser: EASTHAM, M. S. P.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the Sturm–Liouville equation \renewcommand{\theequation}{1.\arabic{equation}} \begin{equation} y^{\prime\prime}(x)+\{\lambda - q(x)\}y(x) = 0\quad (0 \le x < \infty) \end{equation} with a boundary condition at $x = 0$ which can be either the Dirichlet condition \begin{equation} y(0) = 0 \end{equation} or the Neumann condition \begin{equation} y^\prime(0) = 0. \end{equation} As usual, $\lambda$ is the complex spectral parameter with $0 \le \arg \lambda < 2\pi$ , and the potential $q$ is real-valued and locally integrable in $[0, \infty)$ .
ISSN:0024-6107
1469-7750
DOI:10.1112/S0024610702003216