ASYMPTOTICALLY ALMOST PERIODIC SOLUTIONS OF INHOMOGENEOUS CAUCHY PROBLEMS ON THE HALF-LINE
Let u be a bounded, uniformly continuous, mild solution of an inhomogeneous Cauchy problem on R+: u′(t)=Au(t)+ϕ(t) (t[ges ]0). Suppose that u has uniformly convergent means, σ(A)∩iR is countable, and ϕ is asymptotically almost periodic. Then u is asymptotically almost periodic. Related results have...
Gespeichert in:
Veröffentlicht in: | The Bulletin of the London Mathematical Society 1999-05, Vol.31 (3), p.291-304 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let u be a bounded, uniformly continuous, mild solution
of an inhomogeneous Cauchy problem on R+:
u′(t)=Au(t)+ϕ(t) (t[ges ]0).
Suppose that u has uniformly convergent means,
σ(A)∩iR is countable, and
ϕ is asymptotically almost periodic. Then u is asymptotically
almost periodic. Related results have been
obtained by Ruess and Vũ, and by Basit, using different methods.
A direct proof is given of a Tauberian
theorem of Batty, van Neerven and Räbiger, and applications to
Volterra equations are discussed. |
---|---|
ISSN: | 0024-6093 1469-2120 |
DOI: | 10.1112/S0024609398005657 |