ASYMPTOTICALLY ALMOST PERIODIC SOLUTIONS OF INHOMOGENEOUS CAUCHY PROBLEMS ON THE HALF-LINE

Let u be a bounded, uniformly continuous, mild solution of an inhomogeneous Cauchy problem on R+: u′(t)=Au(t)+ϕ(t) (t[ges ]0). Suppose that u has uniformly convergent means, σ(A)∩iR is countable, and ϕ is asymptotically almost periodic. Then u is asymptotically almost periodic. Related results have...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Bulletin of the London Mathematical Society 1999-05, Vol.31 (3), p.291-304
Hauptverfasser: ARENDT, WOLFGANG, BATTY, CHARLES J. K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let u be a bounded, uniformly continuous, mild solution of an inhomogeneous Cauchy problem on R+: u′(t)=Au(t)+ϕ(t) (t[ges ]0). Suppose that u has uniformly convergent means, σ(A)∩iR is countable, and ϕ is asymptotically almost periodic. Then u is asymptotically almost periodic. Related results have been obtained by Ruess and Vũ, and by Basit, using different methods. A direct proof is given of a Tauberian theorem of Batty, van Neerven and Räbiger, and applications to Volterra equations are discussed.
ISSN:0024-6093
1469-2120
DOI:10.1112/S0024609398005657