A SHARP $L^{\lowercase{p}}$ INEQUALITY FOR DYADIC $A_{1}$ WEIGHTS IN $\mathbb{R}^{\lowercase{n}}

The exact best possible range of p is determined such that any dyadic $A_{1}$ weight w on $\mathbb{R}^{n}$ satisfies a reverse Hölder inequality for p, which depends on the dimension n and the corresponding $A_{1}$ constant of w. The proof is based on an effective linearization of the dyadic maximal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Bulletin of the London Mathematical Society 2005-12, Vol.37 (6), p.919-926
1. Verfasser: MELAS, ANTONIOS D.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The exact best possible range of p is determined such that any dyadic $A_{1}$ weight w on $\mathbb{R}^{n}$ satisfies a reverse Hölder inequality for p, which depends on the dimension n and the corresponding $A_{1}$ constant of w. The proof is based on an effective linearization of the dyadic maximal operator applied to dyadic step functions.
ISSN:0024-6093
1469-2120
DOI:10.1112/S0024609305004765