A SHARP $L^{\lowercase{p}}$ INEQUALITY FOR DYADIC $A_{1}$ WEIGHTS IN $\mathbb{R}^{\lowercase{n}}
The exact best possible range of p is determined such that any dyadic $A_{1}$ weight w on $\mathbb{R}^{n}$ satisfies a reverse Hölder inequality for p, which depends on the dimension n and the corresponding $A_{1}$ constant of w. The proof is based on an effective linearization of the dyadic maximal...
Gespeichert in:
Veröffentlicht in: | The Bulletin of the London Mathematical Society 2005-12, Vol.37 (6), p.919-926 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The exact best possible range of p is determined such that any dyadic $A_{1}$ weight w on $\mathbb{R}^{n}$ satisfies a reverse Hölder inequality for p, which depends on the dimension n and the corresponding $A_{1}$ constant of w. The proof is based on an effective linearization of the dyadic maximal operator applied to dyadic step functions. |
---|---|
ISSN: | 0024-6093 1469-2120 |
DOI: | 10.1112/S0024609305004765 |