CROSSED PRODUCT ORDERS OVER VALUATION RINGS II: TAMELY RAMIFIED CROSSED PRODUCT ALGEBRAS

Let $V$ be a commutative valuation domain of arbitrary Krull-dimension, with quotient field $F$, let $K$ be a finite Galois extension of $F$ with group $G$, and let $S$ be the integral closure of $V$ in $K$. Suppose that one has a 2-cocycle on $G$ that takes values in the group of units of $S$. Then...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Bulletin of the London Mathematical Society 2003-07, Vol.35 (4), p.541-552
Hauptverfasser: KAUTA, JOHN S., MARUBAYASHI, HIDETOSHI, MIYAMOTO, HARUO
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let $V$ be a commutative valuation domain of arbitrary Krull-dimension, with quotient field $F$, let $K$ be a finite Galois extension of $F$ with group $G$, and let $S$ be the integral closure of $V$ in $K$. Suppose that one has a 2-cocycle on $G$ that takes values in the group of units of $S$. Then one can form the crossed product of $G$ over $S$, $S\ast G$, which is a $V$-order in the central simple $F$-algebra $K\ast G$. If $S\ast G$ is assumed to be a Dubrovin valuation ring of $K\ast G$, then the main result of this paper is that, given a suitable definition of tameness for central simple algebras, $K\ast G$ is tamely ramified and defectless over $F$ if and only if $K$ is tamely ramified and defectless over $F$. The residue structure of $S\ast G$ is also considered in the paper, as well as its behaviour upon passage to Henselization.
ISSN:0024-6093
1469-2120
DOI:10.1112/S0024609303002066