WHOLE-BODY BIODISTRIBUTION OF 3′-DEOXY-3′-[18F]FLUOROTHYMIDINE (18FLT) IN HEALTHY ADULT CATS
Positron emission tomography/computed tomography (PET/CT) utilizing 3′‐deoxy‐3′‐[18F]fluorothymidine (18FLT), a proliferation tracer, has been found to be a useful tool for characterizing neoplastic diseases and bone marrow function in humans. As PET and PET/CT imaging become increasingly available...
Gespeichert in:
Veröffentlicht in: | Veterinary radiology & ultrasound 2013-05, Vol.54 (3), p.299-306 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Positron emission tomography/computed tomography (PET/CT) utilizing 3′‐deoxy‐3′‐[18F]fluorothymidine (18FLT), a proliferation tracer, has been found to be a useful tool for characterizing neoplastic diseases and bone marrow function in humans. As PET and PET/CT imaging become increasingly available in veterinary medicine, knowledge of radiopharmaceutical biodistribution in veterinary species is needed for lesion interpretation in the clinical setting. The purpose of this study was to describe the normal biodistribution of 18FLT in adult domestic cats. Imaging of six healthy young adult castrated male cats was performed using a commercially available PET/CT scanner consisting of a 64‐slice helical CT scanner with an integrated whole‐body, high‐resolution lutetium oxy‐orthosilicate (LSO) PET scanner. Cats were sedated and injected intravenously with 108.60 ± 2.09 (mean ± SD) MBq of 18FLT (greater than 99% radiochemical purity by high‐performance liquid chromatography). Imaging was performed in sternal recumbency under general anesthesia. Static images utilizing multiple bed positions were acquired 80.83 ± 7.52 (mean ± SD) minutes post‐injection. Regions of interest were manually drawn over major parenchymal organs and selected areas of bone marrow and increased tracer uptake. Standardized uptake values were calculated. Notable areas of uptake included hematopoietic bone marrow, intestinal tract, and the urinary and hepatobiliary systems. No appreciable uptake was observed within brain, lung, myocardium, spleen, or skeletal muscle. Findings from this study can be used as baseline data for future studies of diseases in cats. |
---|---|
ISSN: | 1058-8183 1740-8261 |
DOI: | 10.1111/vru.12024 |