Adaptation of HLA testing to characterize the cynomolgus macaque MHC polymorphisms and alloantibody signatures
Nonhuman primates are the closest animal models to humans with respect to genetics and physiology. Consequently, a critical component of immunogenetics research relies on drawing inferences from the cynomolgus macaque to inform human trials. Despite the conserved organization of the Major Histocompa...
Gespeichert in:
Veröffentlicht in: | HLA 2024-01, Vol.103 (1), p.e15239-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Nonhuman primates are the closest animal models to humans with respect to genetics and physiology. Consequently, a critical component of immunogenetics research relies on drawing inferences from the cynomolgus macaque to inform human trials. Despite the conserved organization of the Major Histocompatibility Complex (MHC) between cynomolgus macaques and humans, MHC genotyping of cynomolgus macaques is challenging due to high rates of copy number variants, duplications, and rearrangements, particularly at the MHC class I loci. Furthermore, the limited availability of commercial reagents specific to cynomolgus macaques that can be used to characterize anti‐MHC class I and class II antibody (Ab) specificities in cynomolgus macaques presents a major bottleneck in translational research. Here we successfully characterized cynomolgus macaque Mafa class I and class II serologic specificities in 86 animals originating from various geographical regions using the complement dependent cytotoxicity (CDC) assay with human HLA class I and class II monoclonal antibody (mAb) typing trays. Further, we successfully induced and characterized anti‐Mafa class I and class II alloantibody specificity using HLA single antigen bead assays. We also subsequently tracked the alloAb burden in the animals during treatment with anti‐B lymphocyte stimulator (BLyS) treatment. Altogether, these methods can be easily used in translational research to serotype MHC class I and class II specificity in macaques, characterize their alloAb specificity, and evaluate the efficacy of novel therapeutic modalities in depleting circulating alloAbs in these animals. |
---|---|
ISSN: | 2059-2302 2059-2310 |
DOI: | 10.1111/tan.15239 |