Multivariate geometric anisotropic Cox processes
This paper introduces a new modeling and inference framework for multivariate and anisotropic point processes. Building on recent innovations in multivariate spatial statistics, we propose a new family of multivariate anisotropic random fields, and from them a family of anisotropic point processes....
Gespeichert in:
Veröffentlicht in: | Scandinavian journal of statistics 2023-09, Vol.50 (3), p.1420-1465 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper introduces a new modeling and inference framework for multivariate and anisotropic point processes. Building on recent innovations in multivariate spatial statistics, we propose a new family of multivariate anisotropic random fields, and from them a family of anisotropic point processes. We give conditions that make the proposed models valid. We also propose a Palm likelihood‐based inference method for this type of point process, circumventing issues of likelihood tractability. Finally we illustrate the utility of the proposed modeling framework by analyzing spatial ecological observations of plants and trees in the Barro Colorado Island data. |
---|---|
ISSN: | 0303-6898 1467-9469 |
DOI: | 10.1111/sjos.12640 |